本实用新型公开了一种新能源汽车热管理系统使用的板式换热器总成结构,包括板式换热器芯体、电子膨胀阀、螺钉固定板、缓冲垫、支架,所述支架开有两个沿长度方向的条形槽,所述条形槽卡接有所述缓冲垫,所述缓冲垫为顶部开有通孔的圆柱形结构,所述缓冲垫中部设有环形槽形成与所述条形槽卡接的小径部分,所述螺钉固定板固定于所述板式换热器芯体下面,所述螺钉固定板通过穿过所述缓冲垫的螺钉安装于所述支架顶部,所述支架上还安装有电子膨胀阀。解决了现有技术中有技术中板式换热器芯体减震处理效果不好,影响整车行驶过程中舒适性的问题。
本发明涉及一种利用整车余热的新能源汽车热管理系统,包括电机及电池散热回路,电池加热回路,乘员仓供暖回路及乘员仓制冷回路;电机及电池散热回路包括循环连通的散热器、电池包及电机机构;电池加热回路包括依次循环连通的水暖加热器、第一循环泵、电池包及电机机构;乘员仓供暖回路包括依次循环连通的加热芯、第二循环泵、电池包、电机机构及水暖加热器;乘员仓制冷回路包括依次循环连通的蒸发器、冷凝机构及第一膨胀阀。本发明旨在解决传统技术中空调系统、电机冷却系统、电池温控系统相互独立工作导致能量利用不充分、结构冗余、影响汽车续航里程的问题。
一种车辆热管理系统,包括散热器,该散热器接收在冷却剂供应管线中的液体冷却剂并且将该冷却剂排放到冷却剂泵供应管线中。冷却剂泵接收来自冷却剂泵供应管线的冷却剂并将该冷却剂排放到多个发动机部件中。限定第一变速器油热交换器的变速器油热交换器接收从多个发动机部件排出的冷却剂。空气-冷却剂过冷热交换器限定第二变速器油热交换器。过冷热交换器接收绕过多个发动机部件的部分冷却剂。
本发明实施方式公布一种小型车载可充电储能系统(RESS)的热管理系统和热管理方法。小型车载可充电储能系统包含壳体及位于壳体内的多个锂电池电芯;热管理系统包括:导热铝板,包含第一导热部分和第二导热部分;多个导热硅胶垫,与第一导热部分接触;其中每个导热硅胶垫适配于容纳多个锂电池电芯中的一个锂电池电芯;半导体制冷片,分别与第二导热部分和所述壳体的内壁接触,其中半导体制冷片包含适配于连接到直流对直流转换器的引脚。发明实施方式实现了一种不依赖于液冷和自然风冷的小型车载可充电储能系统的热管理机制,显著降低复杂度和管路尺寸,还可以兼顾保温和热交换性能。
本发明实施方式公开了新能源车辆串联式热管理管路的控制方法和装置。该方法包括:温度差检测元件检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。本发明实施方式实现串联式热管理系统管路方案,保证了流量均一性,而且利用换向阀对串联式水路的流向进行控制,从而减少电池系统温差。
本发明公开了一种电池热管理系统及电池温度的调节方法,涉及电动汽车技术领域,提高了动力电池的工作效率,能够发挥动力电池的最大使用性能。本发明的主要技术方案为:多个换热器,每个换热器安装在对应的电池箱上,每个换热器的输入端设有控制阀,每个换热器的输出端设有流量传感器;热源设备,热源设备设置于电池箱外,热源设备的输入端分别连接于每个换热器的输出端,热源设备的输出端分别连接于每个换热器的输入端;控制器,控制器设置于所述电池箱外,控制器的输入端分别连接于每个流量传感器的输出端,控制器的输出端分别连接于每个控制阀的输入端。本发明适用于对多个电池箱进行温度调节处理的过程中。
公开了一种热管理系统,所述热管理系统不仅用于加热和冷却车辆,而且还用于管理车辆中的电子部件和电池的热。所述热管理系统可通过降低功率消耗来增加电池的使用时间。所述热管理系统包括具有简单结构的制冷剂线路和冷却剂线路。
本发明涉及一种基于电动水泵的汽油机智能闭环控制热管理方法,该方法如下:在发动机的ECU中提前载入预先标定的目标水温map、电动水泵预调map和补偿系数曲线;在常规运行阶段,当实际水温升高至电动水泵正常运转水温阀值后,电动水泵进行常规不停机运转,此时电动水泵转速=电动水泵预调转速×补偿系数;其中电动水泵预调转速根据此时发动机转速和能代表发动机负荷的参数由ECU内的电动水泵预调转速map读取;补偿系数根据发动机转速和能代表发动机负荷的参数由ECU内的补偿系数曲线读取。本发明能够实现基于目标水温的闭环控制,保证发动机一直工作于适宜水温条件下,降低了发动机油耗、提高了整机可靠性。
本发明涉及一种新能源汽车锂动力电池热管理模拟方法,包括以下步骤:S1、通过HPPC方法测得不同温度、不同SOC参数下的电池单体内阻,得到实验样本;S2、将S1中的实验样本进行归一化处理;S3、通过椭球单元神经网络对S2中的数据以及电池内阻进行创建神经网络预测模型,并得出预测结果;S4、将S3中的预测结果进行间隔加密并测出相应的内阻值;S5、对S4中的数据进行回归拟合;S6、在电池不同的充电倍率下,得出生热回归公式;S7、利用CFD仿真软件的格式编写UDF程序;S8、对电池单体进行CFD仿真实验。采用上述技术方案,本发明提供了一种新能源汽车锂动力电池热管理模拟方法,该模拟方法提高了新能源汽车锂动力电池生热模型的准确性。
本发明公开了一种基于热管和液冷装置的电池热管理系统,包括:电池模组、冷却装置和控制装置,所述控制装置与所述冷却装置通过电信号互相连通,所述冷却装置安装在所述电池模组外部,所述控制装置与所述电池模组电连接;所述冷却装置包括热管和液冷板,所述热管和所述液冷板都安装在所述电池模组的外部;所述控制装置包括电控置装置和流量控制装置,所述电控置装置分别与流量控制装置和电池模组电连接,所述流量控制装置通过管路分别与所述热管和所述液冷板相连通;克服了液冷板散热不均易出现温差的问题,具有散热均匀减小散热结构的体积的优点。
本实用新型公开了一种用于车辆的减振器以及具有其的车辆,所述减振器包括:减振器本体以及加热件,所述减振器本体构造为橡胶件,所述加热件嵌设在所述减振器本体内,所述加热件适于在所述减振器本体的温度低于预设值时对所述减振器本体加热。由此,通过设置加热件,一方面,不仅使减振器在不同外界温度下,均具有一致的减振效果,使减振器的NVH水平一致性较高;而且在冬季使用或者温度较低的地区使用时,避免受冷后减振器本体硬度增大,工作时局部断裂,可以延长减振器的使用寿命;另一方面,使加热件嵌设在减振器本体内,可以避免加热件直接与外界接触,避免加热件受热氧化等、延长加热件的使用寿命,提高减振器的工作稳定性。
本实用新型公开了一种新能源汽车热管理系统,包括热泵控制回路、电机电控回路和电池回路;热泵控制回路包括电机压缩机、液冷冷凝器、蒸发器、室外换热器、水PTC和暖风芯体,电池回路包括液冷冷凝器、电池冷却器、电池模块、三通阀、水PTC、暖风芯体、第三电子水泵和低温散热器;电机电控回路包括水PTC和电机电控模块,电机电控模块与三通阀的第二个端口相连,水PTC通过暖风芯体与电机电控模块相连。本实用新型充分利用电机电控回路中的废热,可同时对热泵控制回路、电机电控回路和电池回路进行热管理,三个回路共用水PTC,并通过管路将三个回路相互连接,实现电机电控的余热再次利用,提高冬季热泵采暖性能,提高整车续航里程。