本发明涉及新能源汽车动力电池热管理技术领域,公开了一种液冷管路与动力电池包的密封接头,包括集成接头本体,集成接头本体两端分别开有第一接口和第二接口,集成接头本体内部中空使第一接口和第二接口连通,集成接头本体中部开有与内部连通的第三接口,第三接口上安装有温度传感器。本发明还公开了一种液冷管路与动力电池包的密封接头的安装结构。本发明液冷管路与动力电池包的密封接头及其安装结构,有效解决液冷管路进出液接头与电池包箱体的密封性问题,且连接可靠性高,加工简单。
本发明实施例提供一种SCR系统转化率监控方法、装置、设备及存储介质,该方法包括:若监测到车辆的柴油机颗粒过滤捕集器DPF进入到驻车再生过程中的起燃阶段,则判断是否满足SCR系统转化率监控初始条件;若确定满足SCR系统转化率监控初始条件,则控制进入驻车再生过程中的SCR系统转化率监控阶段,并在进入SCR系统转化率监控阶段后控制DPF的上游温度维持在预设温度区间,在DPF的上游温度维持在预设温度区间时,SCR系统的上游温度维持在最佳效率监控温度区间;若确定满足SCR系统转化率监控放行条件,则对SCR系统的上下游氮氧化物质量进行监控,得到监控结果;根据监控结果计算SCR系统的转化率。
本发明涉及新能源汽车动力电池热管理技术领域,公开了一种电池液冷板快速样件结构,依次包括底板、中框和盖板三层,底板贴合电池模组,中框和盖板的外轮廓与底板的外轮廓保持一致,盖板表面设计有标准的矩阵式圆锥凸点矩阵结构,底板上开有两个带翻边的冲孔,冲孔上均连接有金属阳接头,底板、中框、盖板和金属阳接头通过钎焊工艺整体焊接在一起。本发明还公开了一种电池液冷板快速样件结构的制造方法。本发明电池液冷板快速样件结构及其制造方法,以机加工的工艺方式替代开模具的工艺方式完成零部件的制造,在液冷板样件阶段大大降低投资成本和明显缩短开发周期,能到达量产产品的性能要求,便于完成整车级别的电池包热管理系统的性能验证。
本发明实施例提供了一种整车热管理系统的控制方法、车辆和存储介质,其中,整车热管理系统的控制方法包括:基于获取到的整车工作状态,确定与工作状态匹配的热管理操作的需求阈值;根据采集到的整车热管理系统的工况参数,以及工况参数与需求阈值之间的对应关系,生成整车热管理系统的需求信息;根据多条换热回路的集成关系与需求信息,生成控制信息;根据控制信息,配置冷媒调节装置的运行状态。通过本发明的技术方案,实现对整车热管理系统中的多条换热回路的协调控制,以防止整车热管理系统出现错误的控制方式与切换方式,进而提升整车热管理系统运行的安全性。
本实用新型公开了一种新型抱罐车,包括动力牵引头,动力牵引头包括动力传动系统、冷却系统和电驱控制系统,动力传动系统包括依次相连的变速箱、万向联轴器、驱动桥和车轮;冷却系统包括电池组冷却系统、电机冷却系统和热管理系统;电驱控制系统包括动力电池组、高压配电盒、三合一控制器、驱动电机、电机控制器和整车控制器,高压配电盒用于对动力电池组提供的供电电压再分配;整车控制器用于发出控制指令,对电机控制器或热管理系统进行相应控制;电机控制器用于在整车控制器发出的控制指令下,控制驱动电机启动或停止。本实用新型公开的新型抱罐车,节能环保、能耗低且动力转换效率高。
本发明提供一种燃料电池电堆冷却系统,其特征在于:包括通过管路连接的燃料电池电堆、水泵、风机、散热器、散热水管和若干节温器,共同组成冷却液循环回路,其中冷却液小循环回路包括燃料电池电堆、水泵、节温器C和节温器A,大循环回路包括燃料电池电堆、水泵、节温器C、风机、散热器和节温器B,节温器C上还并联有散热水管和节温器D。本发明提供的燃料电池电堆的冷却系统分为小循环与大循环,当汽车以较小功率行驶时,冷却系统只通过散热器散热,当燃料电池电堆功率过大时,开启节温器使冷却液通过所设计的散热水管,保证电堆的入口温度在合适的范围内。
本实用新型实施例提供了一种电动汽车热管理系统,包括车身控制器、冷却液膨胀散热箱、第一循环泵和第二循环泵,车身控制器通过接收并根据电动汽车上安装的整车控制器所采集的电动汽车电气系统和用电设备工作时的温度信息控制第一循环泵、第二循环泵和冷却风扇按设定的工作程序进行工作,以此对电动汽车底盘上安装的三合一电驱系统、第一和第二多合一电子控制单元、以及由第一和第二多合一电子控制单元分别控制的驱动电动汽车前、后车轮运动的第一至第四驱动电机进行有效的热管理,及时排除这些电气系统和用电设备工作时产生的过多热量,保证电气系统和用电设备的正常工作,提高了电动汽车的性能,满足了电动汽车使用者高品质的体验需求。
一种燃料电池汽车的热管理系统和燃料电池汽车,包括:第一换热回路,所述第一换热回路用于与燃料电池换热,所述第一换热回路中设有位于所述燃料电池上游的第一循环水泵;暖风加热回路,所述暖风加热回路中设有第二加热器,所述暖风加热回路用于对暖风芯体进行加热,所述暖风加热回路可选择性地与所述第一换热回路连通,且所述暖风加热回路适于与所述第一循环水泵的入口端和所述第一循环水泵的出口端连通。本申请的燃料电池汽车的热管理系统,集成有用于与燃料电池换热的回路和用于与暖风芯体换热的回路,既可实现二者的单独换热作用,也可互相流通,实现换热介质共用,从而丰富热管理系统的工作模式,满足不同工况下的使用需求。
本申请提供了一种燃油车进气方法、装置、设备以及存储介质,涉及车辆技术领域。实现在兼顾对发动机舱内的热环境管理的同时,提高汽车的燃油经济性能。所述方法包括:检测车辆的当前运行状态;在所述当前运行状态为车辆启动且非故障的状态时,获取车辆与燃油管理指标对应的第一运行参数以及与热管理指标对应的第二运行参数;根据所述第一运行参数和所述第二运行参数,确定所述车辆的主动进气格栅的目标开度值;根据所述目标开度值,对所述主动进气格栅的当前开度值进行修正,以使所述主动进气格栅以修正后的开度值向车辆进气。
本发明提供了一种温控组件及电池包,温控组件包括第一侧板、第二侧板、第一缓冲板和第二缓冲板,且第二缓冲板与第一缓冲板、第一侧板、第二侧板一起围成通道。通道具有:宽面;窄面,与宽面相对设置;以及限位凸起,突出于宽面并与窄面间隔设置,且限位凸起的至少部分处于窄面在宽面上的投影区域内。在电池包的工作过程中,相邻两个电池的膨胀力挤压第一侧板和第二侧板、第一侧板和第二侧板将膨胀力传递给第一缓冲板和第二缓冲板,第一缓冲板和第二缓冲板在膨胀力的作用下产生弯曲变形以吸收电池的膨胀力。由于限位凸起最终会抵靠到通道的窄面上,从而使得通道依然具有足够的通风空间,由此提高了温控组件的热管理性能以及电池的使用寿命。
本发明提供了一种热管理控制方法、装置和汽车,本发明所述的热管理控制方法、装置和汽车,可以在越野路况下降低汽车的超温阈值,和 或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致汽车出现发动机限扭、空调切断等现象影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
一种柴油机排气处理系统的热管理装置,包括气辅助柴油喷嘴,点火器,柴油计量泵,空气压缩机(或压缩空气源),回抽装置和控制器,设置在包括至少一个颗粒物过滤器(DPF)和选择催化还原器(SCR)的柴油机排气处理系统中,所述气辅柴油喷嘴由电磁驱动的直线电动泵提供柴油、由空气压缩机提供压缩空气,压缩空气在喷嘴内部破碎柴油,形成油气混合物喷出至发动机排气中,点火器点燃油气混合物,提升排气温度,实现排气处理系统的清理,所述控制器通过脉冲调制(PWM)的驱动电信号调节所述电动计量泵油量,压缩空气流量,形成适于点燃的空气 燃料比,保证点火可靠性。目的在于提供一种喷射雾化性能好、控制精度高、结构简单、工作可靠的发动机排气处理热管理装置,以有效实现对发动机颗粒物排放和氮氧化物(NOx)排放的控制。