本发明提供一种航空发动机涡轮转子冷却热管理系统,所述热管理系统包括空油换热器(4)和冷却空气导流结构(17);空油换热器(4)安装于主燃烧室外机匣外侧与转轴之间;空油换热器(4)与发动机燃油流路连通;冷却空气导流结构(17)位于主燃烧室外机匣外侧与转轴之间;冷却空气导流结构(17)的前端与空油换热器(4)的冷却空气出口(16)连接,后端与预旋喷嘴(9)连接;空油换热器(4)用于对空气进行冷却。本发明提供的航空发动机涡轮转子冷却热管理系统,解决高速飞行器中航空发动机涡轮转子超温问题。
本发明涉及尾气后处理技术领域,具体公开了一种尾气热管理耦合方法及尾气处理系统,该尾气热管理耦合方法包括:发动机启动后,确定发动机是否处于冷启动状态,当发动机排放的尾气的流量M小于预设流量M1时,则电控放气阀全开,能够保证涡前气体以最大流量流入排气管路,有助于排气温度的尽快提升;排气节流阀打开第一预设开度,可保证发动机的正常工作的前提下有利于排气尽快升温;并启动电加热格栅对排气加热。通过电控放气阀、排气节流阀以及电加热格栅进行协同控制,有助于尽快提升发动机冷启动下的排气温度,保证三元催化器的转化所需温度,以保证三元催化器的转化效率。
本实用新型涉及动力电池技术领域,具体涉及一种电池包及汽车,所述电池包包括箱体和至少两个电芯;所述箱体的底板上设有限位组件,所述箱体的底板上集成有热管理组件;至少两个所述电芯依次排布于所述箱体内,电芯与电芯之间通过汇流片串联,所述电芯通过所述限位组件限定于所述箱体的底板上;所述热管理组件集成在所述箱体的底板上。本实用新型直接对电芯进行集成,降低了电池包的集成层级,减少了接触电阻的引入,简化了物料种类,增大了电池箱体的空间利用率,提高了电池能量密度、电池包的整体电能效率和热管理效率。
本实用新型涉及电池热管理技术领域,尤其涉及一种新型电动汽车锂电池综合热管理系统,包括锂电池箱体模块,所述锂电池箱体模块包括箱体框架、紫铜管,所述箱体框架呈密封中空结构,其内部填充有相变材料;所述箱体框架的左右侧壁上设有用于所述紫铜管穿过的通孔,所述紫铜管的两端设置于所述箱体框架的外部形成用于制冷剂进、出的制冷剂进口和制冷剂出口。本实用新型采用相变材料作为吸热和放热的介质,具有小型化、轻量化、热管理效果好等优点。
本发明属于电池管理系统领域,具体涉及到前端BMS硬件、边缘计算节点、电池数据分析平台为依托的三层架构组成的新型电池管理系统体系。包括电池容量和SOC不一致判定,电池主动均衡指令计算下发;具备电池寿命预测、健康状态评估功能,包括电池模型更新。本发明所述的基于云端的BMS体系,简化前端硬件部分,加强边缘、云的数据分析功能,并将电池管理、状态评估及运维功能上移至上层平台,依靠上层平台的大数据计算分析能力,提高BMS的安全性,包括风险预警和保护,提高BMS的经济性,包括减低硬件成本,提升电池系统利用效率。
本申请提供一种热管理系统和电动汽车。该热管理系统包括空调制冷剂回路和载冷剂回路,空调制冷剂回路包括第一换热器和中间换热器,载冷剂回路包括载冷剂换热管路、调节支路、电池支路、电机支路和车外支路,车外支路包括并联的第一管路和第二管路,载冷剂换热管路与第一换热器换热连接,第一管路上设置有车外换热器,载冷剂换热管路的第一端能够选择地与第一管路或第二管路的第一端连通,载冷剂换热管路的第二端能够选择地与调节支路或电机支路的第一端连通,调节支路、电池支路、电机支路和车外支路的第二端通过第一四通阀相连。根据本申请的热管理系统,能够合理分配整车热能,提高整车能源利用率,提升续航里程。
本实用新型提供一种热管理系统、电动汽车,热管理系统包括车厢制冷剂循环子系统、电池载冷剂循环子系统、电机载冷剂循环子系统,车厢制冷剂循环子系统包括管路并联的第一换热器、第二换热器以及与第一换热器及第二换热器形成管路串联的第三换热器,电池载冷剂循环子系统通过第二换热器与车厢制冷剂循环子系统形成热交换,电机载冷剂循环子系统通过第三换热器与车厢制冷剂循环子系统形成热交换。根据本实用新型的一种热管理系统、电动汽车,一方面能够充分利用电机及电池余热补偿低温工况下车厢制热能力的不足,另一方面还能够提升电池控温的精度及速度,提高电池能效降低电池温差。
本实用新型提供一种热管理系统和电动车,热管理系统包括:热泵循环管路、电池循环管路和电机循环管路,热泵循环管路上设置有压缩机、第一换热器和第二换热器以及电池换热器,通过第二换热器能够对车内或室内进行制热或制冷,电池换热器的部分还设置在电池循环管路上,以使得热泵循环管路和电池循环管路能在电池换热器处进行换热,第一换热器的部分还设置在电机循环管路上,以使得热泵循环管路和电机循环管路能在电池换热器处进行换热。根据本实用新型将热泵循环管路、电池循环管路和电机循环管路有效地结合,使得电池系统和电机系统工作温度保持在合理范围内,实现整车的热量管理,提高了电动汽车的能源利用率。
本申请提供一种热管理系统和电动汽车。该热管理系统包括空调制冷剂回路和载冷剂回路,空调制冷剂回路包括压缩机、增焓装置、第一换热器和中间换热器,载冷剂回路包括调节支路、电池支路、电机支路和车外支路,车外支路包括并联的第一管路和第二管路,第一管路上设置有车外换热器,载冷剂换热管路的第一端能够选择地与第一管路或第二管路连通,载冷剂换热管路的第二端能够选择地与调节支路或电机支路连通,调节支路、电池支路、电机支路和车外支路通过第一四通阀相连,所述增焓装置通过补气管路连接至所述压缩机的补气口。根据本申请的热管理系统,能够合理分配整车热能,提高整车能源利用率,提升续航里程。
本实用新型提供一种热管理系统、电动汽车,热管理系统包括车厢制冷剂循环子系统、电池载冷剂循环子系统、电机载冷剂循环子系统,车厢制冷剂循环子系统包括管路并联的第一换热器、第二换热器以及与第一换热器及第二换热器形成管路串联的第三换热器、补气增焓压缩机、第二四通阀、第一节流元件、第二节流元件、第三节流元件、增焓部件,电池载冷剂循环子系统通过第二换热器与车厢制冷剂循环子系统形成热交换,电机载冷剂循环子系统通过第三换热器与车厢制冷剂循环子系统形成热交换。本实用新型能够充分利用电机及电池余热补偿低温工况下车厢制热能力的不足,还能够提升电池控温的精度及速度,提高电池能效降低电池温差。
本实用新型公开了一种新能源汽车热管理流体的带载循环耐久测试台架,包括:热管理液体循环系统、加热系统和冷却系统;热管理液体循环系统包括试验箱、热管理液体循环管路,试验箱内的热管理液体从下部流出进入热管理液体循环管路,再经过热管理液体循环管路从试验箱的上部循环流入,试验箱内设置有搁置架,搁置架下方的试验箱内设置有搅拌器,并且该试验箱还配置有试验工件负载电源;加热系统用于为循环热管理液体进行加热,冷却系统用于为循环热管理液体进行制冷,热管理液体循环管路可在加热系统和冷却系统之间切换。本实用新型可模拟电驱动系统热管理流体的工况状态,测试电驱动系统的材料及部件的兼容性、寿命和耐久。
本发明实施例提供了一种整车热管理系统的控制方法、车辆和存储介质,其中,整车热管理系统的控制方法包括:基于获取到的整车工作状态,确定与工作状态匹配的热管理操作的需求阈值;根据采集到的整车热管理系统的工况参数,以及工况参数与需求阈值之间的对应关系,生成整车热管理系统的需求信息;根据多条换热回路的集成关系与需求信息,生成控制信息;根据控制信息,配置冷媒调节装置的运行状态。通过本发明的技术方案,实现对整车热管理系统中的多条换热回路的协调控制,以防止整车热管理系统出现错误的控制方式与切换方式,进而提升整车热管理系统运行的安全性。