本实用新型涉及电动汽车热量管理技术领域,提供了一种动力电池热管理控制系统及方法,该系统包括:依次通过管路连接的热交换器、加热器、电子水泵M1及动力电池包,动力电池包的输出管路通过三通阀Y2与热交换器或发动机的输入管路连接,发动机的输出管路通过三通阀Y3与散热风扇或三通阀Y1的输入管路连接,散热风扇的输出管路与三通阀Y1的输入管路连接,三通阀Y1的输出管路与电子水泵M1或电子水泵M2的输入管路连接,电子水泵M2的输出管路与发动机的输入管路连接。动力电池热管理系统包括内循环及外循环,可以选择内循环或外循环对动力电池包进行不同程度加热或冷却,能更为精准的调控动力电池包的温度。
本发明公开了一种车用燃料电池热管理系统及方法,其中热管理系统包括设置在燃料电池模块与ATS总成之间的水冷主回路,水冷主回路包括第一主回路、及第二主回路,第一主回路和第二主回路之间设有并联布置的第一支路和第二支路,第一支路上设有加热器,第二支路接入乘客舱暖风采暖回路,第一主回路上位于第二支路与ATS总成之间的管路上设有第一电磁阀,第一支路上设有第二电磁阀,第二支路上设有第三电磁阀,第二主回路位于第一支路和燃料电池模块之间的管路上设有水泵,水冷主回路上设有温度传感器,温度传感器的信号输出端连接至整车控制器,整车控制器的信号输出端连接至第一电磁阀、第二电磁阀、第三电磁阀、加热器和乘客舱暖风机。本发明提供的系统及方法,可缩短燃料电池启动时间,充分利用燃料电池产生的热量。
本实用新型涉及一种新能源动力电池热管理控制装置,包括动力电池包、第一节温器、第二节温器、水泵及散热器,所述第一节温器的主阀门与动力电池包的出液口连通,第一节温器的副阀门与水泵的进水口连通,所述水泵的出水口经散热器与第二节温器的主阀门连通,第二节温器的副阀门与动力电池包的进水口连通。本实用新型可以减少在行车加热过程中需耗费大量电能的问题以及加热和制冷功能无法隔离开的问题。
在一个方面,本公开涉及用于数据中心的热管理系统。热管理系统可以包括在干模式和湿模式下可操作的空气对空气热交换器。热管理系统还可以包括液体对空气热交换器。液体对空气热交换器可以具有接受冷却液的盘管,盘管定位成与数据中心的空气连通,使得冷却液可以从数据中心的空气中吸收热量。更进一步,热管理系统可以包括具有冷凝器和蒸发器的直接膨胀冷却回路。系统还提供多种冷却模式之中的多种组合操作条件。描述了其他方面。
本发明涉及一种电池管理系统热管理的控制方法,所述方法包括:基于加热继电器常闭状态下判断所述电池热管理系统是否满足第一预设条件,若满足,则所述电池热管理系统进入加热状态并输出加热电流,否则不进行加热;实时监控当前加热状态,并判断是否满足第二预设条件,若满足,则退出加热,否则继续加热直至满足第二预设条件退出加热,进而完成热管理控制。该电池管理系统热管理的控制方法,可以有效的降低电池组的损坏风险,延长电池组的寿命,防止出现过度加热的现象,而且客户可以通过需要进行选择加热效率。
本实用新型提供一种电池热管理装置和电动车辆,包括液冷回路、液流加压单元、释放单元、控制单元和与电池单元热传递接触的液冷板,所述释放单元和液流加压单元分别与液冷回路连接,所述液流加压单元用于提高液冷回路中冷却剂的流速;所述释放单元用于将液冷回路中的冷却剂释放到电池单元上;所述液冷板的入水口和出水口分别与液冷回路连通;所述释放单元和液流加压单元分别与控制单元电连接;控制单元用于控制释放单元和液流加压单元的开启或关闭。当电池发生热失控时,能提高冷却剂释放到电池单元上的速率,提高降温效率,有效防止热失控的进一步发展。
本公开提供了用于信息技术(IT)设备的浸没冷却的系统和方法。例如,浸没槽可以容纳通过浸没槽循环的冷却流体(例如,经由泵)。此外,IT容器可以至少部分地被容纳在浸没槽内,并且IT容器可包括多个IT隔室,多个IT隔室被构造为容纳一个或多个IT组件。冷却流体可以选择地提供给安装有IT设备的IT隔室用于IT设备的冷却。
本发明公开了一种智能热管理防水型动力电池箱,其方案是:电池箱主要由六个部分组成,分别是上盖组件、密封胶条、箱体组件、电池组件、管理系统和空调系统。电池组件包括相变材料组件、电池芯和连接片。管理系统包括电极连接杆、连接器、控制器和通讯接口。工作时当控制器检测到电池芯的温度和电池芯之间的温度差在设定范围内,由相变材料组件负责吸收电池组的热量;当控制器检测到电池芯的最高温度超出设定值,则启动空调系统给电池箱内部制冷降温;当控制器检测到电池芯的温度低于设定值,启动空调系统给电池箱内部制暖升温。由于箱体设计的特殊密封结构,整个电池箱具有热管理智能化、低能耗、防水和整体安全性高的特点。
本申请提供一种燃料电池汽车多环境综合热管理方法,可实现对不同环境温度采用不同的控制模式。在常温环境模式下,即第一控制模式下,通过前馈控制和反馈控制方法,可以确保温度控制的精确性和稳定性。在第二控制模式下,且高温环境模式下,采用动力系统协同控制,降低燃料电池工作电流,提高燃料电池效率,以减少燃料电池系统产热,解决了高温环境下冷却系统散热压力大的问题。在第二控制模式下,且低温环境模式充分利用燃料电池系统余热,在保证燃料电池系统和车厢内温度的同时,降低了整车能量消耗。从而,在面对一年四季复杂多变的环境下,可以保证燃料电池系统温度控制的精确性和稳定性,并且大大降低整车的能耗,提高整车的经济性,增加续驶里程。
本实用新型涉及氢气燃料电池及燃料电池发动机系统测试技术领域,具体涉及一种燃料电池发动机水热管理测试平台。主要技术方案为包括控制系统,所述的控制系统分别连接变频水泵、加热器、外部冷却循环系统,所述的变频水泵与水箱、混水阀、分水阀、换热器、外部冷却循环系统依次连接,所述的分水阀连接待测热水管理换热器,所述的变频水泵经流量计连接待测热水管理换热器,所述的水箱中设置加热器。本实用新型主要用于燃料电池水热管理测试中模拟产热功能及对水热管理系统测试,有利于对水热管理中换热功能测试。
本发明公开一种用于服务站的柴油机分立式DPF热管理再生装置,该装置与整车上拆解下来车载DPF对接,自动实现DPF系统的再生。所述用于服务站的柴油机分立式DPF热管理再生装置包括鼓风机装置、混合气喷射装置、燃烧器、DOC装置、DPF装置以及电控单元。本发明不需要进行大量的柴油机机内热管理标定,后处理热管理标定独立,安装布置简单,维修方便,适合国内各种柴油机在用车改装后处理售后服务需求。
一种动力电池热管理系统中水泵故障处理方法与系统,动力电池能在冷却回路与加热回路之间切换,所述处理方法包括:动力电池温控状态为加热时,若此时判断水泵有停机的故障,使动力电池处于加热回路,关闭加热装置;动力电池此时处于加热回路,当水泵故障恢复时,使能加热装置,使动力电池快速处于加热状态;动力电池温控状态为冷却时,若此时判断水泵有停机的故障,使动力电池处于冷却回路,关闭冷却装置;动力电池此时处于冷却回路,当水泵故障恢复时,使能冷却装置,使动力电池快速处于冷却状态。本方案在动力电池加热或冷却的过程中,若水泵故障时通过附件的协调控制,实现节约能源和避免加热或冷却装置因未有效散热而发生故障的效果。