本发明公开了一种相变材料薄膜,含有相变微胶囊和高导热碳材料,所述相变微胶囊和高导热碳材料混合均匀;所述相变微胶囊与高导热碳材料的质量比为(10~40)∶1。本发明提供的相变材料薄膜中的高导热碳材料能够形成导热网络,从而强化相变薄膜的传热能力,搭配相变微胶囊,获得优异的热管理能力。该相变材料薄膜具有良好的热导率和热稳定性,相变焓高,相变时形态稳定,宏观形态大小均可调整,能够对微小型电子元器件进行有效的热管理,达到理想的效果,提高电子元器件的效率和使用寿命。
本发明公开了一种车辆的热管理系统及其控制方法和车辆,热管理系统包括:串联连接的发动机、散热器、第一流量调节阀、电池、第二流量调节阀、电机控制器、第三流量调节阀和电机,电机再与发动机相连通以形成循环,其中,第一流量调节阀还与第二流量调节阀之间连接有第一管路,第二流量调节阀与第三流量调节阀之间连接有第二管路,第三流量调节阀与发动机之间连接有第三管路。由此,可以有效控制流向电池、电机控制器和电机的冷却液流量,从而可以达到冷却液流量精细化控制,可以使得电池、电机控制器和电机维持在各自的工作温度区间内,进而可以保持最佳工作状态,可以延长各个部件的使用寿命。
本发明提供了一种动力电池热泵式冷媒直接热管理系统及方法,其包括包括电动压缩机、四通换向阀、第一换热器、第一双向电子膨胀阀、第二双向电子膨胀阀、电池换热板、第二换热器、第三换热器、第一电磁阀、第二电磁阀、气液分离通道、电池温度传感器、压力传感器与电池热管理模块。本发明实现了高效冷媒直接冷却与热泵冷媒直接加热一体化热管理、电池组内温度及其分布高一致性灵活控制等,具有电池组内温度一致性高与系统结构简单、能耗低、成本低、重量轻、适应性强、高防护性、易于规模产业化实现的优势和特点,可避免对电池的热损伤、一致性恶化并提高其全工况全温度范围的安全可靠性、提高其容量利用率和能量利用率、延长其使用寿命。
本发明公开了一种动力电池的液冷热管理测试系统,动力电池的液冷热管理测试系统包括:水泵,水泵用于驱动换热管路中的换热介质流动,换热介质用于与电池包的换热部换热;制冷装置,制冷装置用于给换热介质制冷;制热装置,制热装置用于给换热介质加热;控制器与水泵、制冷装置、制热装置均通讯连接,且控制器包括第一控制单元、第二控制单元和第三控制单元,第一控制单元与所述水泵相连且用于控制水泵,第二控制单元与制冷装置相连且用于控制制冷装置,第三控制单元与制热装置相连且用于控制制热装置;显示终端与控制器通讯连接,且用于显示水泵、制冷装置和制热装置的工况。本发明的动力电池的液冷热管理测试系统,各项集成一体,易配合控制。
本发明公开了一种基于三维均温板的电池热管理装置,包括控制器、外壳、温度传感器,所述外壳的开口处设置有开度可调节的开关门,所述外壳内设置有三维均温板,所述三维均温板包括空心底板和竖直地平行间隔设置在所述底板上的若干空心分支板,底板的内腔与各分支板的内腔相连通,所述电池包放置在各分支板与所述底板合围的各空间内;所述底板的底面贴合地设置有冷热两用温控装置;所述的三维均温板前后两侧设置有散热翅片,所述控制器电路连接温度传感器、开关门等。本发明可根据工况对电池模组进行节能散热或预热。电池与三维均温板之间设置的相变材料可快速吸收热量,提高均温性和安全性的同时,采用半导体制冷片时可以进行余热发电。
本发明涉及一种电池模组自动化热管理方法,包括两种用于判断如何控制风机的判断方法。当所述电池模组在放电倍率或充电倍率等于或大于一预设倍率的情况下放电时间或充电超过一预设时间时,或者在一预设判断周期内所述电池模组的温升大于或等于预设温度时,启动或切换使用第一种判断方法,否则启动或切换使用第二种判断方法。本发明的电池模组自动化热管理方法可根据电池模组工况、温升、连续的充电倍率等条件判断来自动化地开启 关闭风扇、调节风速,控制电池运行的温度环境,保证电池模组的安全,使电池组发挥最佳性能和寿命。
本实用新型集成电池温度控制的电动车热管理系统,空调系统包括电动压缩机、冷凝器、膨胀阀、电子膨胀阀、蒸发器和电池冷却器,电动压缩机、冷凝器、膨胀阀和蒸发器依次连接,电子膨胀阀和电池冷却器与膨胀阀和蒸发器并联。电池温度控制系统包括依次连接的水泵、电加热器、电池冷却器、电池包和电池加热器。电机冷却系统包括第二水泵、三向阀、散热器、电池加热器和电机控制器,第二水泵、三向阀、散热器和电机控制器依次连接,电池加热器和散热器并联。不需PTC在行驶时开启,也不需利用热泵系统而牺牲冬季乘员仓制热,利用电机冷却系统中的热量实现电池加热,可让电池在低温环境时工作在合理温度范围内,实现电机冷却系统中主要零部件的降温。
本发明公开了一种结合热管冷却和热防护的热管理系统,包括电池单体(1),各电池单体(1)设置在绝热层(13)下方,绝热层(13)上方为冷却层(12);每两个电池单体(1)组成一个电池对单元(14),每个电池对单元(14)的两个电池单体(1)之间均匀设有热管(3),热管(3)一端穿过绝热层(13)延伸至冷却层(12),另一端延伸至所述电池单体(1)的底部,用于传导电池充放电过程中产生的热量;每个电池对单元(14)的两侧设有热隔离层(11),用于对热失控的电池单体(11)进行热隔离。本发明的系统,通过热管冷却和热隔离层结合的方式综合考虑了电池热管理以及电池热管理失控后的应急措施,比普通的单纯热管理系统更具安全性。
本发明提供了一种混合动力汽车热管理系统及控制方法以及混合动力汽车,热管理系统包括高温冷却循环系统以及低温冷却循环系统。高温冷却循环系统包括第一散热器、发动机、发动机水泵以及发动机油冷器。低温冷却循环系统包括第二散热器、开关阀以及电机水泵。该混合动力汽车热管理系统的高温冷却循环系统和低温冷却循环系统可以相互独立工作也可以相互协同工作,适应范围广,满足不同模式下变速器的冷却需求,发动机、变速器和驱动电机的冷却效果好。
本发明属于电动汽车领域,具体提供一种电动汽车及其热管理系统。本发明旨在解决现有的电动汽车的空调系统在冬天制热时耗电量大,影响电动汽车续航里程的问题。为此,本发明的热管理系统包括空调系统、电池热管理系统、电机热管理系统、具有彼此独立的第一通道和第二通道的第一换热器、具有彼此独立的第三通道和第四通道的第二换热器和控制阀。第一通道和第三通道分别串联到空调系统的回路中,第二通道和第四通道分别串联到电池热管理系统的回路中和电机热管理系统的回路中。控制阀能够使电池热管理系统的回路和电机热管理系统的回路串联到一起。本发明具有上述构造的热管理系统能够吸收动力电池和电机产生的废热,减少电动汽车的耗电量。
本发明公开了一种提高基于拉曼光谱法的芯片结温测试精度的分析方法,其原理是基于芯片温度和对应热源区材料特征拉曼谱峰值波数的关系变化,利用洛伦兹函数对材料的特征谱峰值进行拟合,提升其峰值处的拉曼光谱波数分辨率,近而达到提高对应温度测试精度的目的。本发明解决了拉曼光谱法测试芯片结温时光谱波数分辨率不足的问题,提升了结温测试精度,满足功率芯片对温度标定的高精度需求,对器件热管理的技术开发和寿命评估研究有极大的指导意义。
本发明提供一种电池包热管理装置及其散热和加热方法,包括多个单体电池、金属板、金属纤维棒、箱体、散热冷却板、回流装置、电磁加热器、喷淋装置,箱体通过金属纤维棒和金属板上通孔内壁的沟槽将箱体内液体吸附在金属板的通孔中,动力电池温度升高的同时将金属板和金属纤维棒之间的液体加热,温度升高到一定值后液体相变为汽体,再通过散热冷却板的冷却作用将汽体冷凝后经回流装置流回箱体,以此循环达到电池包散热的目的,简化了电池散热的结构。在寒冷情况下,使用电磁加热器将箱体内液体快速加热,促进热量在单体电池周围循环。本装置和方法具有高效的自主运行散热能力与加热能力,解决了热管理系统成本高且大量消耗动力电池电量的问题。