本发明实施方式公开了一种新能源汽车的热管理系统及其调节方法和新能源汽车。热管理系统包括:电池水路;电机水路;位于电机水路和电池水路之间的正温度系数(PTC)加热器,所述PTC加热器具有第一进水口、第二进水口、第一出水口和第二出水口,其中所述第一进水口和第一出水口连接到所述电池水路,所述第二进水口和第二出水口连接到所述电机水路;其中所述PTC加热器,适配于在所述PTC加热器的内部空间中混合电池水路中的冷却液和所述电机水路中的冷却液。本发明实施方式通过PTC加热器将电机水路与电池水路相接通,可以利用电机系统的废热给电池系统进行加热,合理利用及分配整车可用能源,减少电能多余消耗。
本发明实施方式公开了新能源车辆串联式热管理管路的控制方法和装置。该方法包括:温度差检测元件检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。本发明实施方式实现串联式热管理系统管路方案,保证了流量均一性,而且利用换向阀对串联式水路的流向进行控制,从而减少电池系统温差。
本发明公开了一种电池热管理系统及电池温度的调节方法,涉及电动汽车技术领域,提高了动力电池的工作效率,能够发挥动力电池的最大使用性能。本发明的主要技术方案为:多个换热器,每个换热器安装在对应的电池箱上,每个换热器的输入端设有控制阀,每个换热器的输出端设有流量传感器;热源设备,热源设备设置于电池箱外,热源设备的输入端分别连接于每个换热器的输出端,热源设备的输出端分别连接于每个换热器的输入端;控制器,控制器设置于所述电池箱外,控制器的输入端分别连接于每个流量传感器的输出端,控制器的输出端分别连接于每个控制阀的输入端。本发明适用于对多个电池箱进行温度调节处理的过程中。
本发明实施方式公开了一种电动汽车动力电池热管理管路的流量测试方法和装置。该方法包括:在热管理管路的冷却液主回路中布置接触式流量计、加热部件和制冷部件,并记录接触式流量计的第一流量读数;在热管理管路的冷却液主回路中拆除接触式流量计、加热部件和制冷部件,在冷却液主回路中布置第一非接触式流量计和调节阀,拆除每个分支管路中的电池包,并在每个分支管路中分别布置水室部件;调节调节阀的开度,以使得第一非接触式流量计的流量读数等于第一流量读数;利用第二非接触式流量计读取每个分支管路中的流量读数。本发明实施方式减少热管理连接部件,结构简单,易于实现,降低时间和物料成本,测量准确度提高,安装空间大且易于操作。
本发明实施方式公开了一种新能源汽车的膨胀水箱共享系统和新能源汽车。包括:电机水路;电池水路;混水支管,位于所述电机水路和所述电池水路之间;回水支管,位于所述电机水路和所述电池水路之间;膨胀水箱,包含第一回水管、第二回水管和排气管;其中所述排气管连接到电机水路,所述第一回水管连接到电机水路,所述第二回水管连接到所述电池水路。在本发明实施方式中,利用共用的膨胀水箱同时为电机水路和电池水路提供储液排气功能,降低冷却液的容量和重量,节省安装膨胀水箱所需的结构和安装支架,还降低了整车重量和成本。
本发明提出纯电动车辆的热管理回路状态监控方法及装置。方法包括:发现热管理回路的工作状态变化,则根据变化后的工作状态,获取对应的热管理回路上的目标转速,将获取的目标转速发送给热管理回路上的每一水泵,并通知每一水泵将当前转速调整到该目标转速上;接收每一水泵的流量检测模块周期性发来的流量,根据当前的目标转速,查找到该水泵的该目标转速对应的正常流量以及对应的流量偏差阈值,计算流量检测模块发来的流量与该正常流量的差值,判断该差值的绝对值是否大于该流量偏差阈值,若是,确定热管理回路状态异常;否则,确定热管理回路状态正常。本发明实现了对纯电动车辆的热管理回路的状态的监控。
本发明实施方式公开了一种电动汽车热管理管路的测试系统和方法。测试系统包括第一测试装置、第二测试装置和第一执行器,其中:第一测试装置,用于基于第一传感量输入值生成第一模拟传感信号;第二测试装置,与第一测试装置和第一执行器连接,用于基于第一模拟传感信号生成用于控制第一执行器的第一模拟控制指令,并向第一执行器发出第一模拟控制指令;第一执行器,用于执行第一模拟控制指令。应用本发明实施方式,无需传感器和控制器即可对管路进行控制测试,节省了测试时间,促进了整车产品开发进度。
本发明实施方式公开了一种新能源汽车电机冷却液回收系统和回收方法。包括:电机水路,包含电动机;电池水路,包含电池箱和正温度系数(PTC)加热器;位于电机水路和电池水路之间的混水支管;位于电机水路和电池水路之间的回水支管;第一温度传感器,用于检测电机水路的温度;第二温度传感器,用于检测电池箱温度;第三温度传感器,用于检测PTC加热器入口的温度;第四温度传感器,用于检测PTC加热器出口的温度;布置在混水支管中的第一阀及布置在回水支管中的第二阀;其中混水支管与电机水路的连接点处的水压高于混水支管与电池水路的连接点处的水压,回水支管与电池水路的连接点处的水压高于回水支管与电机水路的连接点处的水压。
本发明提供了一种动力电池极端温况的试验方法及系统。其是将动力电池置于恒温恒湿室中,并将恒温恒湿室的温度和湿度设定为针对所述动力电池能够正常工作的极端温度和湿度;实时监测所述动力电池中各个测试点的温度;当所述动力电池中各个测试点的温度均达到所述极端温度时,随即开启所述动力电池在所述极端温度和湿度情况下的试验。采用本发明的方法和装置不必将动力电池置于极端温度下相当长的时间后再进行试验,即能够准确获知动力电池内部各处的实时温度,使得动力电池的温度处于一种对观察者的透明状态,又不必等待足够长的时间再进行试验,从而节省了大量的时间,提高了试验的效率,也节省了为保持极端温况条件的能耗以及人力成本。
本发明实施方式公开了确定新能源车辆的电池组温差的方法、装置和控制方法。方法包括:在电池组的多个预定位置处布置多个温度传感器;接收多个温度传感器各自提供的检测值,并对检测值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的检测值;计算第一次舍弃处理后剩余的检测值的第一均值,基于第一均值计算第一标准差,并对第一次舍弃处理后剩余的检测值执行附加处理,附加处理包括:执行舍弃与第一均值的差的绝对值大于预定倍数的第一标准差的检测值的第二次舍弃处理;将附加处理后剩余的检测值中的最大值与最小值的差,确定为电池组温差。利用统计学参数排除掉传感器故障的测量值,提高温差的正确性。
本公开涉及一种膨胀壶、电池热管理系统及车辆,该膨胀壶包括壳体和加热器,所述壳体上形成有进液口、出液口,所述壳体中形成有用于容纳冷却液的腔室,所述加热器设置在所述腔室中,用于加热所述腔室中的冷却液。通过上述技术方案,将加热器集成设计在膨胀壶中,既能实现膨胀壶收容和补偿冷却液的功能,又能实现加热冷却液的功能,集成化高、结构简单;将上述膨胀壶应用到热管理系统中时,可以减少热管理系统的零部件的数量,降低了生产成本。由于连接管路随零部件的数量一起减少,因此也降低了冷却液在管路中的热量损失,优化整车能耗。
本发明实施方式公开了一种电动汽车热管理管路的测试系统和方法。测试系统包括第一传感器、测试装置和第一执行器,其中:第一传感器,用于检测电动汽车热管理管路中的第一传感信号;测试装置,与第一执行器和第一传感器连接,用于基于第一传感信号生成用于控制第一执行器的第一控制指令,并向第一执行器发出第一控制指令;第一执行器,用于执行第一控制指令。应用本发明实施方式,无需控制器即可对电动汽车热管理管路进行控制测试,节省了测试时间,促进了整车产品开发进度。