本发明提供一种具有微胶囊相变材料的电池模块,作为汽车热管理系统。在一种形式中,微胶囊相变材料采用泡沫的形式,该泡沫由封装在基本上聚合物基的壳体内的芯制成。在更具体的形式中,泡沫材料可定制成适于在多于一个温度例如相对冷的温度和相对高的温度经历等温相变。基于这种微胶囊相变材料的使用的热管理系统,包括用于高温和低温车辆操作条件下可能遭遇的情况的加热和冷却能力。还描述了一种控制电池模块的温度的方法。
本发明涉及基于燃料类型的起停催化剂加热系统。具体地,提供了一种起停系统,其包括确定供应至发动机的燃料的燃料类型的燃料类型模块。阈值模块基于燃料类型确定第一阈值。温度模块估计发动机的排气系统的催化剂的温度。比较模块将温度与第一阈值比较,并产生比较信号。功率模块基于比较信号调节至加热电路的功率。加热电路构造成提高催化剂的温度。当发动机关停时,功率模块调节至加热电路的功率,以便提高催化剂的温度。发动机控制模块关停和重新起动发动机,以减少发动机的空转时间。
本发明涉及用于高效稀燃操作发动机的热管理系统。具体地,提供了一种热管理系统,其包括确定催化转化器是否为活性的催化转化器模块。选择性催化还原SCR催化剂模块确定SCR催化剂是否为活性。当催化转化器不为活性时,发动机控制模块调节发动机的空燃比以便以化学计量比操作,并且延迟发动机的火花。当催化转化器为活性而SCR催化剂不为活性时,发动机控制模块执行后燃料喷射和将燃料直接喷射到发动机的排气系统中的至少一个。
混合动力车辆包括排气处理系统,该系统具有用于引导气流或排气流穿过旁路或穿过主催化器的旁路阀。混合动力车辆包括内燃发动机和电机,每个选择性地与变速器接合以提供驱动扭矩。当接合以提供驱动扭矩时,电机旋转内燃发动机,因此产生了穿过排气处理系统的来自内燃发动机的未加热气流。当发动机旋转且不被提供燃料时,旁路阀引导气流穿过旁路以防止冷却主催化器。当内燃发动机旋转且被提供燃料,即运行时,旁路阀引导排气流穿过主催化器以处理排气流。
本发明涉及具有流动转换的空气冷却电动车辆牵引蓄电池的方法。一种热管理系统,其通过流动转换穿过蓄电池外壳的空气为蓄电池提供空气冷却和加热。所述蓄电池包括多个设置在外壳内的蓄电池单格电池。所述外壳包括具有第一端和第二端的第一歧管以及与第一歧管相对的具有第一端和第二端的第二歧管。所述热管理系统包括允许空气流入和流出第一歧管的第一端或第二端的多个阀,和允许空气流入和流出第二歧管的第一端或第二端的第二阀,以提供流动转换。
本发明涉及用于电池单元温度控制的挤制散热片,具体地,提供了一种用于电池组的热管理系统,其包括设置成堆的多个主体、与多个主体流体连通的流入管道和流出管道、以及联接到多个主体的保持面板。所述主体包括散热片和管道且是利用挤出工艺而形成,这使得散热片和热沉的重量最小化同时使热管理系统的成本最小化。
本发明涉及带有高导热率涂层的改进的高电压端子冷却,公开了一种具有改进的传热的电池组。在一个实施例中,该电池组包括多个电池,每个电池具有阳极箔和阴极箔;一对分接头,第一分接头连在该阳极箔上且第二分接头连在该阴极箔上;其中,至少一个电池在阳极箔或阴极箔或这两者的至少一面上具有高导热率涂层;或者至少一个分接头在至少一面上具有高导热率涂层;或者这两者。还公开了改进电池组传热的方法。
本发明涉及二次电池热管理装置和系统。一种用于消散来自二次电池单元的热能的热管理装置包括:第一板,所述第一板限定第一通道和与所述第一通道隔开的第二通道,其中,所述第一板还限定与所述第一通道连通的入口端口和与所述第二通道连通且与所述入口端口相对隔开的出口端口。所述装置包括第二板,所述第二板构造为与所述单元进行热能交换,并设置为与所述第一板接触,以限定交叉流动通道,其中,所述交叉流动通道将所述第一通道和所述第二通道互连。一种热管理系统包括具有第一温度的单元、具有比所述第一温度低的第二温度的流体以及所述装置。所述流体经由所述交叉流动通道从所述入口端口可传送到所述出口端口,由此消散来自所述单元的热能。
本发明涉及热管理废气处理设备及其制造方法。一种废气处理设备被设置在废气处理系统内并且包括波纹金属板制成的金属卷筒,具有从入口端轴向延伸至出口端的纵向延伸通道以及位于金属卷筒的各层之间并且被设置用于使传热介质在金属卷筒中循环的管路,管路在金属卷筒中轴向和径向地延伸。
本发明涉及用于空冷锂离子电池和电池组的热管与百叶窗翅片的组合。具体描述了一种热管。该热管包括:含有工作流体的热管主体;和邻近热管主体一端的百叶窗式冷却翅片,该百叶窗式冷却翅片从热管主体的表面向外延伸。本发明还描述了包含所述热管的空气冷却的电池组。