本实用新型公开了一种基于无刷电机水泵的电动客车自适应热管理系统,包括电机系统冷却回路,电机系统冷却回路由散热器、溢流壶、电机水泵、电机控制器、电机通过管路依次连接成冷却回路,冷却回路里填充冷却液,电机水泵为无刷电机水泵,无刷电机水泵由无刷电机控制器控制,无刷电机控制器通过CAN总线与整车电池热管路系统、空调热管路系统进行通讯,实时监控散热情况并通过控制无刷电机的速度来控制冷却液流量。该基于无刷电机水泵的电动客车自适应热管理系统可以精确控制制冷液流量,提高散热效率。
用于封装物料运输车辆的能量源的系统和方法。该系统和方法包括:封装件,具有前壁、后壁和内舱室;入口通道,与前壁一体形成并与内舱室流体连通,入口通道由入口百叶窗和入口凸缘限定;出口通道,与后壁一体形成并与内舱室流体连通,出口通道由出口百叶窗和出口凸缘限定;定位在内舱室内的一个或多个能量源单体;以及与入口通道和内舱室流体连通的冷却风扇。冷却风扇运行以将空气经由入口通道引入内舱室,使得内舱室内的空气被排出出口通道。
本实用新型提供的一种电池组热管理系统,所述电池组热管理系统包括电池组、加热装置、检测模块以及控制模块;所述加热装置与所述电池组之间通过管道连接,管道内流通有加热介质;所述检测模块包括用于检测所述加热装置内加热介质温度的第一温度传感器以及检测所述电池组内加热介质温度的第二温度传感器;所述控制模块接收第一温度传感器和 或第二温度传感器的温度信息,所述控制模块根据接受的温度信息控制所述加热装置的工作状态。本实用新型的两个温度传感器的配合,能及时根据电池组热管理系统内的温度情况,做出精准的响应,实现对电池组直接、快速、准确的温度调控,从而减少了整车的能量浪费,有利于整车的持续运行。
一种电容器(100)包括第一缠绕 线圈构件(58),其中第一缠绕 线圈构件(58)包括第一介电层(56)和第一导电层(50)。第二缠绕 线圈构件(60)包括第二介电层(57)和第二导电层(52)。第一缠绕 线圈构件(58)与第二缠绕 线圈构件(60)部分地或全部地交错。介电外壳(24)或壳体适于至少径向地容纳或围界第一缠绕 线圈构件(58)和第二缠绕 线圈构件(60)。第一缠绕 线圈构件(58)电连接到第一导电端部(20)。第二缠绕 线圈构件(60)电连接到第二导电端部(21)。第二导电端部(21)与第一导电端部(20)相对。第一导电端部(20)形成第一引线;第二导电端部(21)形成第二引线。
讨论了具有改进的延迟和效率的对图像内容进行编码以用于进行传输和经由远程装置显示的技术。这样的技术可以包括基于跳过指示符,至少跳过至少第一帧的非媒体内容部分的编码、打包和传输。对于跳过帧,可以捕捉一个或多个选择性更新以及将其集成到后续非跳过帧的编码,其可以打包并且传输到远程装置用于呈现给用户。
本发明为方形电池成组方法及其液体换热装置,属于电动汽车电池热管理领域,特别涉及动力电池液流换热的换热装置及轻量化和安全性的提高。本装置去除以往的电池间有流体流动的换热结构,采用在电池单体间布置石墨衬垫和换热片的方式,流体从底部焊接的液流换热板内流过,从而带走电池传递给石墨衬垫和换热片的热量。这种布置方式避免了大量液体流动在电池之间,有利于电池包的轻量化;同时当电池包受到撞击时,避免电池正负极通过流体形成短路,提高了电池包的安全性。除此之外,本发明还对整个热管理装置的分水器、分水器固定套、固定保护结构以及外部壳体进行了设计。
本实用新型提供了一种电池包热管理系统,包括加热回路、冷却回路、电池包回路以及换热器;电池包回路包括供电池包回路液体循环流动的电池包循环通道以及电池包,所述电池包设置在所述电池包循环通道上;所述加热回路包括供加热介质循环流动的加热循环通道以及设置在所述加热循环通道上并为所述加热介质加热的加热装置;所述冷却回路包括供冷却介质循环流动的冷却循环通道以及设置在所述冷却循环通道上并为所述冷却介质冷却降温的冷却装置。本实用新型通过设置换热器,加热回路和冷却回路共同使用一个换热器,降低成本、节省了空间。另一方面,本实用新型还提供了一种新能源汽车,具有上述电池包热管理系统。
本实用新型公开一种汽车热管理系统和电动汽车,该系统包括热泵空调系统、电池包换热系统和第一板式换热器,所述热泵空调系统包括压缩机、室内冷凝器、室内蒸发器和室外换热器,所述第一板式换热器的制冷剂入口经由选择性导通或截止的电池冷却支路与所述室外换热器的出口或所述室内蒸发器的入口连通,所述第一板式换热器的制冷剂出口经由电池冷却回流支路与所述压缩机的入口连通,所述第一板式换热器同时串联在所述电池包换热系统的电池冷却液回路中。这样,可以使电池在夏天时始终在合适的温度范围内工作,从而提高电池的充放电效率、续航能力及使用寿命。
本实用新型公开了一种汽车热管理系统及电动汽车,其中,汽车热管理系统包括热泵空调系统、电池包换热系统和第一板式换热器,热泵空调系统包括HVAC总成、压缩机和室外换热器,第一板式换热器的制冷剂入口经由选择性导通或截止的电池冷却支路与室外换热器的出口连通或与室内蒸发器的入口连通,第一板式换热器的制冷剂出口经由电池冷却回流支路与压缩机的入口连通,第一板式换热器同时串联在电池包换热系统的电池冷却液回路中。这样,汽车热管理系统可以通过电池水循环系统,先利用制冷剂使得冷却液降温,再利用冷却液来对电池进行冷却,使得电池在夏天时处于合适的温度范围内工作,从而提高电池的充放电效率、续航能力及使用寿命。
本实用新型公开了一种电动汽车热管理系统和电动汽车,该系统包括动力电池、热泵空调系统和换热管,压缩机的出口与四通阀的入口连通,四通阀的第一切换口与室外换热器的第一端口连通,室外换热器的第二端口经由第一膨胀阀与室内换热器的第一端口连通,室内换热器的第二端口与四通阀的第二切换口连通,四通阀的出口与压缩机的入口连通,换热管的第一端口经由节流支路与室外换热器的第二端口连通,或者经由流量调节支路与室内换热器的第一端口连通,换热管第二端口与室内换热器的第二端口连通,换热管与动力电池接触换热。在实现空调制冷或热泵采暖的同时,能利用制冷剂与动力电池进行接触换热,以保证动力电池模组适宜的工作温度。
本实用新型涉及一种动力电池组复合热管理系统,包括动力电池组、信号巡检控制器、PCM相变冷却器、电池风冷散热器、电池液冷散热器、热泵空调、循环泵、三个电磁控制阀、设置在动力电池组内的四组温度传感器及设置在动力电池组周围的温度传感器,该系统具备PCM相变冷却、风冷散热器冷却和热泵空调辅助冷却的联合热管理能力。在动力电池组热管理过程中,通过实时判定电池组内温度和时间步长控制方法调控各热管理支路的运行与关闭,实现动力电池组入口冷却液流温度的梯级降序冷却,避免低温入口冷却液与初始高温电池组间的大温差换热引起的剧烈温度波动,提升热管理过程电池组内温度一致性,保障电池组效能和安全。
本发明披露了一种用于控制电机的方法和具有热管理的逆变器。温度估算模块针对逆变器的每个相估算多个半导体器件中的相应的半导体器件的每个结点温度。温度估算模块或数据处理系统确定这些半导体器件中的具有最高结点温度的最热的器件。温度调节模块或数据处理系统确定是否最高结点温度参数小于最大结点温度参数,或决定是否调节半导体器件的占空因数。