本发明公开了主动式风冷与相变冷却复合电池热管理系统及其工作方法,该系统由热管理系统箱体、电池组、相变冷却装置、支撑柱、支撑板、冷却风进口、冷却风出口和电动推杆组成;设置上下叠放的两组冷却相变装置,相变装置与电池组相配合;共有两组进、出风口;当一组相变冷却装置工作时,另一组相变冷却装置与其对应进、出风口组成相变装置的冷却系统,通过强制风冷进行相变材料的降温凝固;当工作的相变装置热失效时,由电动推杆将冷却系统内的相变装置传送至与电池组成新的工作系统,此时热失效的相变冷却装置则与另一进、出风口组成新的冷却系统;本发明显著提高系统内相变控温装置的控温效果,并有效避免相变装置充热失效后无法继续工作的弊端。
本发明公开了一种跨临界CO2汽车空调热管理系统及其最佳充注量标定方法,空调系统包括压缩机、气体冷却器、回热器、质量流量计、节流阀、蒸发器、储液器。本发明首先指出了该判定方法的选择的判断依据参数,然后本发明指出了判断方法的具体实施工况,最后本发明具体提出了充注量的判定方法的具体实施步骤。本发明对系统充注量的判定综合且考虑全面,避免了由于充注量的不合适导致的系统性能的不佳甚至是部件的损坏,减少不必要的损失同时有利于节约能源。
本发明提供了一种换热装置及热管理系统,涉及换热器领域。换热装置包括换热入口、换热出口、基体、盖板、通道壁。基体的一侧开设有换热槽;盖板与基体连接,且密封换热槽;通道壁设置在换热槽中,且呈螺旋设置;通道壁之间形成换热通道;换热入口和换热出口通过换热通道连通,且换热入口相对换热出口靠近换热槽的中心;通道壁的壁面为凹凸表面。换热装置既能保证电池组温度的一致性,也能降低自身运行的能耗。
本发明公开了一种跨临界二氧化碳电动汽车热管理系统及控制方法,包括:压缩机、气体冷却器、第一电子膨胀阀、储液器、第二电子膨胀阀和蒸发器;所述压缩机采用3+1缸补气活塞式压缩机,压缩机的a吸气口连接3个主气缸用于主循环压缩,压缩机的b吸气口连接1个辅助气缸用于补气压缩,压缩完成后两路制冷剂混合,两者的压缩频率一致;压缩机的出口通过气体冷却器和第一电子膨胀阀连接储液器;储液器的气体出口连接压缩机的b吸气口;储液器的液体出口通过第二电子膨胀阀和蒸发器连接压缩机的a吸气口。本发明解决了跨临界二氧化碳制冷性能不足的难题,推动了绿色制冷剂CO2步入实际应用的进程,为环境保护和节约能源做出了巨大的贡献。
本发明公开了一种喷射-吸收热力循环电池热管理系统及其工作方法,包括换热器、电池封装箱、第一换向阀、第二换向阀、第三换向阀、第四换向阀、第五换向阀、第六换向阀、喷射器、第一循环泵、第二循环泵、第一节流阀及第二节流阀,该系统及其工作方法能够使得电池温度稳定且均匀的保持在工质的沸点附近。
本实用新型公开了一种液冷辅助的相变材料换热的电池热管理系统结构,包括通过液冷换热器相连接的液冷辅助系统和电池热管理模组,电池热管理模组由模组外壳、电池模块和液冷换热器构成,模组外壳为通过成形工艺构成的密闭真空容器,其内部填充相变材料,下部留有电池模块嵌入凹道或电极开口;电池模块布置在模组外壳的外部凹道形成两侧面和顶面的间接接触换热,或布置于模组外壳内部形成电池模块全外表面浸泡换热结构;液冷换热器设置于模组外壳上部,两端连接模组外壳的进液口和出液口;相变材料为低沸点相变材料。本实用新型利用相变材料蒸发、冷凝原理换热,完全适应高负荷工况,保证电池温度均匀性,减少能耗,相变储热效果好。
本发明公开了一种基于混合动力汽车的整车热管理系统与方法,系统包括压缩机、膨胀机、换热器、水箱、泵、散热器、发动机、阀门等部件,通过控制阀门的通断,可以调节不同的运行模式,实现了电池管理、余热回收、以及空调 热泵系统的结合,满足空调制冷、制热以及发动机和电池的散热与预热需求,各个工况不相互影响,能够单独完成,本发明同时通过耦合余热回收系统和空调 热泵系统、空调 热泵系统和电池管理系统,满足余热回收并且可以同时实现制冷 制热的需求、空调 热泵系统制冷冷却电池包的需求,满足混合动力汽车不同行驶工况下的热管理需求。整套系统集成度高,并且适用多种工况,可有效提升整车能源利用效率。
本发明公开了一种液冷辅助的相变材料换热的电池热管理系统,包括通过液冷换热器相连接的液冷辅助系统和电池热管理模组,电池热管理模组由模组外壳、电池模块和液冷换热器构成,模组外壳为通过成形工艺构成的密闭真空容器,其内部填充相变材料,下部留有电池模块嵌入凹道或电极开口;电池模块布置在模组外壳的外部凹道形成两侧面和顶面的间接接触换热,或布置于模组外壳内部形成电池模块全外表面浸泡换热结构;液冷换热器设置于模组外壳上部,两端连接模组外壳的进液口和出液口;相变材料为低沸点相变材料。本发明利用相变材料蒸发、冷凝原理换热,完全适应高负荷工况,保证电池温度均匀性,减少能耗,相变储热效果好。
本发明公开了一种新能源汽车热泵 空调系统。其热源可随意组合变换,具有多种运行工况,可适用于混合动力汽车、电动汽车、燃料电池汽车或任意冷热源需组合变换、工况多样复杂的情形。通过阀门调节,其内部换热器、外部换热器及热交换器可相互组合充当热源或冷源,在满足乘员舱内的制热、制冷需求的同时,不影响其对动力系统进行散热 余热回收或加热等功能,并可以合理分配车内的热管理需求。整套热泵 空调系统可调控为6种运行模式,满足12种使用工况,其灵活性、集成度、适应工况以及热量调控分配能力相比于现有系统更强,使得车辆能够随意调控热管理系统以适应多变的工况,提升整车能量利用效率,具有较大的应用价值。
本发明公开了一种用于电池热管理的渐缩通道冷却结构,包括入口端、冷却流道、电池组、出口端,流体从入口段进入,经过电池间的间距进行对流换热,再从出口段流出,其中,入口端的电池间距略大于出口端的电池间距。所述的电池热管理结构在功耗增加不明显的情况下提升了流体对电池散热的效果,降低了电池温度和电池温差,延长了电池的寿命,保证电动汽车安全有效的运行。
本发明公开了主动式风冷与相变冷却复合电池热管理系统及其工作方法,该系统由热管理系统箱体、电池组、相变冷却装置、支撑柱、支撑板、冷却风进口、冷却风出口和电动推杆组成;设置上下叠放的两组冷却相变装置,相变装置与电池组相配合;共有两组进、出风口;当一组相变冷却装置工作时,另一组相变冷却装置与其对应进、出风口组成相变装置的冷却系统,通过强制风冷进行相变材料的降温凝固;当工作的相变装置热失效时,由电动推杆将冷却系统内的相变装置传送至与电池组成新的工作系统,此时热失效的相变冷却装置则与另一进、出风口组成新的冷却系统;本发明显著提高系统内相变控温装置的控温效果,并有效避免相变装置充热失效后无法继续工作的弊端。
本发明公开了一种混合动力汽车的整车热管理系统,包括膨胀机、热交换器、冷凝器、水箱、泵、电池包换热器、电机散热器、发动机冷却水套、发动机尾气热交换器、阀门等部件,热管理回路中通过控制阀门通断及阀门开度,可以调节不同的系统运行模式,实现了电气系统与发动机系统热管理支路的串 并联,满足散热需求及预热需求,并实现各支路流量调控以适应混合动力汽车不同行驶工况下的热管理需求。本发明同时使用膨胀机、冷凝器及热交换器,实现余热回收利用,其中热交换器与空调 热泵系统相连,实现空调 热泵系统对动力系统进行额外热管理。整套系统集成度较高,占用空间少,适用工况广,可有效提升整车能源利用效率。