本发明涉及一种动力电池热管理系统,包括有磁致冷装置、系统控制装置、动力电池模组、第一制冷循环泵、第二制冷循环泵、第一加热循环泵、第二加热循环泵、相变蓄热装置以及相变蓄冷装置。本发明把磁致冷技术应用于电池热管理,基于磁致冷材料的热磁效应,达到制冷加热的目的;与传统制冷相比,磁致冷单位制冷效率高、能耗小、运动部件少、噪音小、体积小、工作频率低、可靠性高以及无环境污染,同时还克服了一般热管理系统无法实现兼具加热和制冷的功能以及系统繁重、易泄漏等问题。
一种基于温差发电技术的车用发动机热管理系统,其特征在于:发动机排气管上安装有排气温度传感器,排气管联接到第一三向电动比例阀上,第一三向电动比例阀的另外两端分别联接排气消音器和温差发电模块进气口;发动机冷却液出口联接到电子节温器,电子节温器分别联接到水散热器和发动机冷却液入口,发动机冷却液入口处装有冷却液流量传感器和冷却液温度传感器;水散热器后联接第二三向电动比例阀,第二三向电动比例阀另两端分别联接到温差发电模块冷却液入口与发动机冷却液入口;温差发电模块冷却液出口再与发动机冷却液入口相联接;冷却液温度传感器、冷却液流量传感器和排气温度传感器通过信号线联接到控制器,蓄电池通过动力线联接到控制器。
本实用新型提供了一种热管理系统及甲醇燃料汽车,涉及甲醇燃料汽车技术领域,为解决环保高效为发动机和驾驶室的供热的问题。所述热管理系统包括:加热管路,所述加热管路依次连接有甲醇加热装置、设置于驾驶舱的散热单元和发动机连接的发动机散热循环管路。所述热管理系统应用于甲醇燃料汽车中,使用甲醇加热装置为驾驶舱和发动机供热,减少供热过程中污染物的排放,且供热速度快。
本发明提供一种汽车动力电池的加热冷却系统,包括:膨胀水壶、循环水泵、电池冷却器和加热器。所述膨胀水壶通过第一管路与循环水泵相连,所述循环水泵通过第二管路与电池冷却器相连,所述电池冷却器通过第三管路与所述加热器相连,所述加热器通过第四管路与所述膨胀水壶相连。所述电池冷却器用于对动力电池进行制冷;所述加热器用于对动力电池进行加热。在所述循环水泵运转时,所述循环水泵驱动冷却液在所述电池冷却器和所述加热器上循环流动,以增加所述电池冷却器和所述加热器与动力电池的热交换效率。本发明能降低电动汽车成本,增加动力电池的热管理效率。
本发明公开了一种新能源充放电控制方法及电池热管理系统,让电池能在正常温度条件工作,同时有助于提高电池的性能。同时,还提供了一套完善,可靠,性能良好的电池热管理系统,提高安全性。本发明基于电池温度、温升和内阻控制电池散热及充放电策略,能够对电池进行可靠有效的热管理控制,控制精度高,能够提升动力电池的性能,延长电池的使用寿命,提升动力电池的安全可靠性,从而能够进一步提高电动汽车的行驶里程。
本发明公开了一种新能源汽车三电系统健康管理试验台及试验方法,试验台由测功机、测功机控制器、功率分析仪、温度传感器、电流传感器、转速传感器、数据采集控制器、上位机组成。纯电动汽车或者混合动力汽车的三电系统为被测对象,需与包括热管理系统在内的整套动力总成一同参与试验。试验时,数据采集控制器向待测三电系统控制器发出控制信号使三电系统运行,并通过测功机对动力总成进行加载。各个传感器负责对运行过程中影响三电系统寿命的特征参数的采集,通过对数据的处理可实现三电系统健康状态的预测,从而为其健康管理提供依据。
本实用新型涉及一种液冷式动力电池热管理系统,具有依次相连呈环形回路的储蓄系统、冷却系统、加热系统、换热系统和数据采集系统;串联后的冷却系统和加热系统的两端并联有供能系统。本实用新型采用控制降温均匀的液冷式热管理系统,提供液体冷却和液体加热的双重运行模式,操作流程简单,循环介质成本低,提高电动汽车使用温度环境范围;当电池在大电流下充放电时,液冷系统需满足换热的高效性和及时性,具有较强的加热与冷却能力,能在短时间内使电池达到额定工作温度。
本发明公开了一种混合动力总成能量流试验台及试验方法,由热管理系统以及测控系统组成。热管理系统包括四个独立的液流换热系统,每个液流换热系统均包括膨胀水箱、阀门、电子水泵、散热器、电子风扇、过滤器和管道;测控系统包括上位机、NI控制器、油耗仪、温度传感器、流量传感器、扭矩转速仪、功率分析仪、测功机、测功机控制器。上位机通过NI控制器向待测混合动力总成控制器、测功机控制器发出控制信号,实现混合动力总成的运行和加载。热管理系统负责控制混合动力总成运行中的温度。通过测控系统对运行参数的测量,可以计算得到混合动力总成中能量转化、传递和损耗情况,从而进行效能评估,为混合动力总成的开发和优化提供试验依据。
本发明公开了一种电动汽车热管理系统及其控制方法和装置,系统包括电机回路、电池回路、空调冷却回路、四通阀和控制器,控制方法包括:通过第一温度传感器获取电机回路的冷却液温度作为第一温度;通过第二温度传感器获取电池回路的冷却液温度作为第二温度;通过第三温度传感器获取电池回路中BMS的电芯的温度作为第三温度;当控制器检测到电机回路发生故障或电池回路发生故障时,根据第一温度、第二温度和第三温度通过控制器控制四通阀连通电机回路和电池回路。本发明在电机回路和电池回路中的一个回路故障时通过四通阀连通另一个回路来替代工作,从而保护了热管理系统的回路,延长了车辆的使用寿命。本发明可广泛应用于新能源汽车领域。
本发明涉及汽车空调技术领域,具体是涉及一种软包电池热管理装置。主要包括软包电池以及包裹在其侧周边的安装支架,在软包电池的两个侧面分别安装有两个散热板,置于软包电池同一侧的两个散热板的相对侧均冲压有相配合的凸起,两个散热板的凸起共同组成循环介质流通管路,通过在循环介质流通管路中通入低温或高温的液体介质,从而使软包电池在需要冷却或加热时,对其进行冷却或加热;散热板的厚度一般为0 5mm,在软包电池同一侧的两个散热板中,循环介质流通管路成“几”字形往返排布,并通过转接通道使液体循环介质从软包电池的一侧进入另一侧,从而对软包电池的两侧彻底、均匀地冷却或加热,提高电池工作性能。
本实用新型提供了一种电池热管理系统,属于电池技术领域。它解决了现有的技术存在能耗浪费的问题。本电池热管理系统包括用于对电池包进行传热的电池仓,电池仓通过管路依次连通有水箱、水泵和换热器,换热器通过管路连接有制冷剂循环回路,换热器通过出液管路分别与电池仓和水箱连通,出液管路上设置有用于使液体流向电池仓或者水箱的液体流向选择件,电池热管理系统还包括控制器和设置在出液管路上的水温传感器,水温传感器设置在换热器和液体流向选择件之间,水温传感器与控制器的输入端电连接,液体流向选择件与控制器的输出端电连接。本电池热管理系统能够减少残留冷却液对电池包的影响,从而降低能耗。
本发明公开了一种动力电池热管理系统的控制方法,通过在动力电池热管理系统的开启和关闭条件中,增加热耗趋势的评估和计算,由原来的仅根据电池温度T进行被动控制的方式,变为主动提前评估动力电池使用工况的方式,能够更加有效和节能地进行电池热管理,确保热管理系统的运行不会过于滞后电池温度T的变化,确保电池高效率、长寿命运行。