本实用新型涉及电动汽车技术领域,具体涉及一种电动汽车动力电池箱。本实用新型提供的电动汽车动力电池箱,包括箱盖和箱体,所述箱体的内壁上连接有内衬,所述内衬中填充有相变材料。其中所述箱体是由铝合金材料挤压成型的,其密度较小,重量更轻,便于加工制造,加工成本低,同时在所述箱体的内壁上连接有内衬,所述内衬能够增加箱体的整体刚度和强度,可以起到减震吸能的作用,提高箱体的防护能力,在所述内衬中填充有相变材料,利用相变材料的相变储热原理辅助热管理系统对电池箱进行温度调节,使电池箱内的温度能够满足动力电池的性能和使用寿命的需求,确保动力电池在合适的温度下高效的工作。
本实用新型公开了一种新能源汽车电池与座舱空调综合温控系统,包含一个座舱空调单元及一个电池冷暖控温单元,其中,该座舱空调单元,包含一个供冷媒循环的冷气循环回路、一个供热媒循环的热气循环回路以及连接在冷气循环回路 热气循环回路中的座舱空调、压缩机、第二散热器以及热交换器;该电池冷暖控温单元包括,为电池提供冷却液的电池冷却回路以及使电池在控制温度下运行的电池加热回路;当座舱空调处于加热模式,动力电池散热辅助空调加热,当座舱空调处于制冷模式,座舱空调辅助电池散热,在热交换器中冷却液与流经的冷媒 热媒交换热量。本实用新型通过热交换器为电池冷却系统与座舱空调单元之间提供了热能交换的途径,因此可优化热能分配。
本实用新型公开了一种新能源汽车电机散热与座舱空调单元综合温控系统,包含一个电机散热单元、一个座舱空调单元,其中,该座舱空调单元,包含一个供冷媒循环的冷气循环回路、一个供热媒循环的热气循环回路以及连接在冷气循环回路 热气循环回路中的座舱空调、压缩机、第二散热器以及热交换器;该电机散热单元包括,为电机提供冷却液的电机冷却回路以及连接在电机冷却回路上的第一散热器、第一液体泵。本实用新型通过热交换器为电机散热单元与座舱空调单元之间提供了热能交换的途径,当座舱空调处于加热模式,电机散热单元可以辅助空调加热,当座舱空调处于制冷模式,空调可以辅助电机散热,因此可优化热能分配,减少热能损失,节约电力。
本发明公开了一种电池热管理方法、装置、系统及电动汽车,其中,方法包括:采集动力电池的当前温度;判断动力电池的当前温度是否小于预设阈值;如果当前温度小于预设阈值,则控制车辆的驱动电机冷却循环系统对动力电池进行加热。该方法可以在动力电池的当前温度过低时,通过驱动电机冷却循环系统对动力电池进行加热,不但提高动力电池的使用寿命,有效提高车辆的安全性和可靠性,而且与驱动电机冷却循环系统相结合,节约能源,结构简单易实现。
本发明公开了一种电动汽车动力电池热管理系统及方法,属于动力电池热管理技术领域。所述电动汽车动力电池热管理系统当动力电池的温度在高于第一阈值时,第一冷却回路被连通,冷媒介质经过压缩机到冷凝器再到制冷交换器与冷却液进行热量交换,使得降温后的冷却液进入动力电池进行热量交换,实现动力电池在高温环境下的降温;当动力电池的温度高于第二阈值,低于第一阈值时,第二冷却回路被连通,冷却液经过散热器散热后进入动力电池进行热量交换,实现动力电池在一般环境温度下的液冷降温;当动力电池的温度低于第三阈值时,加热膜被启动,通过加热膜的加热使得动力电池升温,实现了动力电池在低温环境下的加热。
本实用新型提出了一种用于电子设备热设计的实验教学装置,旨在提供一种高效可靠且能全面引入各散热性能影响因子的教学实验平台,包括实验控制台和多个实验平台;实验控制台包括第一无线通信模块和操控模块,其中:第一无线通信模块用于建立操控模块与实验控制板的数据通信,操控模块用于调节实验参数、实时显示各测温点温度曲线图及总体温度分布云图、导出历史实验数据以及电子版实验报告单;实验平台包括实验箱、实验控制板和电源模块,其中:实验箱包括带有不同栅格孔的通风挡板和用于加热、散热、预紧及测温的功能模块,实验控制板用于控制上述功能模块,电源模块用于向实验控制板及上述功能模块提供电能。
本发明公开了一种LED的热管理方法及装置,包括:检测LED的工作温度;根据预设温度占空比对应关系确定与工作温度对应的PWM信号,其中,较高的工作温度对应的占空比小于较低的工作温度对应的占空比;根据PWM信号对应生成LED的驱动电流以驱动LED工作在安全温度范围。其中,随着LED工作温度的上升,对应的PWM信号的占空比减小,生成的驱动电流减小,LED的工作功率减小,从而降低了LED的工作温度。可见,本申请可以自动控制LED的工作温度使其工作在安全温度范围,降低了光输出的损失率,尽可能维持了材料的自身性能,从而延长了LED的流明维持率,且修正了LED的色温偏移。
本实用新型公开了一种电池热管理系统以及电动汽车,涉及电池技术领域。该电池热管理系统包括动力电池、电池组支架和热管。固定孔与安装孔间隔设置,动力电池穿过固定孔,且与电池组支架固定连接,以将动力电池上的热量传递到电池组支架上,热管的一端伸入安装孔,且与电池组支架固定连接,热管能够吸收动力电池传递给电池组支架的热量,并将其散发到外界。与现有技术相比,本实用新型提供的电池热管理系统由于采用了间隔安装于电池组支架上的热管和动力电池,所以能够将动力电池产生的热量间接通过热管散发到外界,被动地对动力电池进行散热冷却,不需要消耗额外的电能,散热效果好,节约能源,实用高效。
本实用新型提供一种动力锂电池组液冷双循环热管理箱,包括小循环水箱、大循环水箱、进水口三通阀、出水口三通阀、温度传感器、右侧半导体TEC组件、左侧半导体TEC组件、水泵和主控板;当环境温度过低或过高时,出水口三通阀和进水口三通阀全部打开,冷却液通过小循环出水管和大循环出水管进入水泵,并利用水泵将冷却液在锂电池包内循环后通过小循环进水管、大循环进水管分别进入小循环水箱、大循环水箱,随后重复同样循环过程给锂电池组制冷或者加热。本实用新型解决了现有技术中锂电池组热管理系统的结构复杂、制造加工成本高、功耗大、热管理效果不理想等缺点;大小水箱同时进行双循环,能充分利用环境温度的调节作用,节省能量。
本发明涉及一种多舱段航天器热负荷分析方法,包括:(a)分析多舱段航天器在各种工作模式下的外热流情况;(b)根据在各模式下各舱段内部产热量和不可控散热量,统计各模式下各舱段产生的可控散热量;(c)确定各舱段散热能力,据此对各舱段所述可控散热量进行分配,对各舱段散热部件进行设计。本发明的多舱段航天器热负荷分析方法,能够有效控制热管理系统的重量,规避辐射器冻结失效的风险。
本实用新型涉及一种车辆及其热管理系统,该热管理系统包括空调系统冷却管路、电机散热系统冷却管路和制冷剂 冷却液换热器,空调系统冷却管路中设置有车内空气 制冷剂换热器,制冷剂 冷却液换热器的第一组端口和第二组端口分别设置在空调系统冷却管路和电机散热系统冷却管路中;制冷剂 冷却液换热器的第一组端口的两端并联有空调制冷剂旁路,空调制冷剂旁路中串联设置有车外空气 制冷剂换热器和乘客区侧电子膨胀阀。在本实用新型中,当空调系统处于制热模式下时,通过控制乘客区侧电子膨胀阀的开度,使少量的制冷剂流经车外空气 制冷剂换热器,从而避免了流经乘客区侧电子膨胀阀的低温制冷剂会导致车外空气 制冷剂换热器结霜的现象。
本发明公开了一种新能源汽车的电池热管理方法、装置、系统及新能源汽车,其中,方法包括:采集动力电池的当前温度;判断动力电池的当前温度是否大于预设阈值;如果当前温度大于预设阈值,则根据当前温度得到目标冷却量,并根据目标冷却量控制车辆的空调冷却系统对动力电池进行降温。该方法可以在动力电池的当前温度过高时,通过空调冷却系统降低动力电池的温度,不但提高动力电池的使用寿命,有效提高车辆的安全性和可靠性,而且与空调冷却系统相结合,节约能源,结构简单易实现。