本发明属于燃料电池控制技术领域,公开了一种基于dSPACE的燃料电池控制系统,包括dSPACE主控模块、空气供给子系统、氢气供给子系统、水热管理子系统、电能管理子系统;dSPACE主控模块分别与空气供给子系统、氢气供给子系统、水热管理子系统、电能管理子系统通讯连接。本发明解决了现有技术中对燃料电池的控制效果较差、实时性较差的问题,能够克服传统单片机控制受制版工艺、布局结构等因素影响导致的抗干扰能力差、不易扩展、实时性差、控制效果差等不足,能够增加燃料电池的工作效率,延长使用寿命,提高安全性。
本实用新型公开了一种电动汽车高效一体化主动热管理系统,包括喷油冷却润滑式机电耦合系统、油冷一体化高压集成控制器、油冷动力电池系统、基于高效热泵的复合冷暖空调系统、中央换热器系统、模块化风冷系统、可切换回路系统、控制装置;本实用新型通过切换控制的管路,使整车在低温时,保证各发热零部件运行在适宜温度,对其余热充分利用,导入动力电池包及车室内供热,减少热泵空调系统及PTC加热器运行时间,降低采暖电耗;缩短预热时间,有利于动力电池的健康;在高温时热量排出,保证各发热部件运行在适宜温度。通过多回路主动切换的形式,使各部件温度处于最优区间,将余热传递并释放到有需要的部件,实现热管理系统的高效、灵活、节能。
本实用新型提供了一种动力电池热泵式冷媒直接热管理系统,其包括包括电动压缩机、四通换向阀、第一换热器、第一双向电子膨胀阀、第二双向电子膨胀阀、电池换热板、第二换热器、第三换热器、第一电磁阀、第二电磁阀、气液分离通道、电池温度传感器、压力传感器与电池热管理模块。本实用新型实现了高效冷媒直接冷却与热泵冷媒直接加热一体化热管理、电池组内温度及其分布高一致性灵活控制等,具有电池组内温度一致性高与系统结构简单、能耗低、成本低、重量轻、适应性强、高防护性、易于规模产业化实现的优势和特点,可避免对电池的热损伤、一致性恶化并提高其全工况全温度范围的安全可靠性、提高其容量利用率和能量利用率、延长其使用寿命。
本实用新型公开了一种汽车热管理系统及其电动商用车,通过在热管理系统中将冷却液分两路设置,经过水泵,流入燃料电堆,再经过三通阀,流入散热器,合并后流入加热器形成回路;支路上的冷却液经过三通阀,当冷却液不经过散热器时,实现了冷却液的小循环,当冷却液流过散热器时,实现了冷却液的大循环的功能,通过冷却液的大循环和小循环可降低散热器上风扇的功耗;通过将加热器布置主回路上,用单个加热器可实现双支路的冷却液加热。当单燃料电堆工作时,冷却液温度逐步上升到燃料电堆最佳工作温度,当另一个燃料电堆开始工作时,可利用较为合适温度的冷却液流入燃料电堆,有效提高了燃料电堆的使用寿命。
本发明提供了一种车辆的电池热管理系统,属于电池领域。该系统包括:热电半导体换热单元,包括热电半导体、第一空气换热器和第二空气换热器,第一空气换热器的一端连接有第一进风管路,另一端连接有第一出风管路,第二空气换热器的一端连接有第二进风管路,另一端连接有第二出风管路;电池包,其一端与第一出风管路相连,另一端连接有第三出风管路;风扇单元,设置于第三出风管路和第二出风管路的下游,用于将第三出风管路和第二出风管路的气流排出车辆的外部;和控制单元,与热电半导体换热单元和风扇单元均相连,用于根据电池包的温度控制施加于热电半导体的电压和风扇单元的功率。本发明的电池热管理系统冷却效果好、系统简单和成本较低。
本实用新型公开一种基于双循环的动力电池包热管理系统,包括电池包BMS、热管理控制器、压缩机、PTC加热器A和PTC加热器B,所述电池包BMS一端连接有电池包进水口温度传感器,另一端连接有电池包出水口温度传感器,所述电池包进水口温度传感器一侧连接有三通换向阀B,所述三通换向阀A一侧连接有冷却器,另一侧连接电池散热器,所述电池散热器一侧连接有压缩机,所述压缩机一侧连接有电动水泵A,另一侧连接有冷却器,所述电动水泵A一侧连接有PTC加热器B;该种基于双循环的动力电池包热管理系统解决了对水冷电池包加热和冷却的问题,在冷却工况时引入双循环能够最大限度的降低压缩机能耗。
本发明涉及一种组合物、利用该组合物制得的高效阻燃的相变热管理复合材料及其制备方法。所述组合物包含25-90wt%的相变温度为20~60℃的烷烃类相变材料;5-15wt%的导热填料;5-25wt%的一种或多种如下阻燃剂:次磷酸铝、聚磷酸铵+季戊四醇复合物、磷氮纳米复合阻燃剂;0-30wt%的树脂基材料;0-2wt%的抗氧剂;0-3wt%的玻璃纤维。这一复合材料力学性能优异、导热系数高、对相变材料的封装率高、相变后无渗漏,能有效的对电池组温度进行调控,可将电池组的温度控制在最佳工作温度范围内,提高电池组的寿命与可靠性;能够达到UL 94标准的最高级别V-0,阻燃性能优异,提高了电池组的安全性。
本实用新型公开了一种电池箱中电芯温度的采集结构,所述电池箱中包括多个相互平行设置的软包电芯(1);任意相邻的两个软包电芯(1)之间,设置有一个绝热缓冲材料层(2);每个绝热缓冲材料层(2)中具有一个传感器安装孔,该传感器安装孔中嵌入有一个温度传感器(3),所述温度传感器(3)的探头与位于预设一侧的软包电芯(1)的侧面相接触,所述温度传感器(3)用于采集该软包电芯(1)的表面温度;温度传感器(3),与外部温度采集设备相连接,用于将所采集的温度数据传递给外部温度采集设备。本实用新型能够更为准确地采集电动汽车辆电池箱中电芯的温度,以便于进一步对电芯实时热管理,提高电动汽车辆电池箱的安全性能。
本发明涉及一种带有温控热开关的热管-PCM耦合热管理模块,包括动力电池组和热管理系统,电池箱体内排列有若干电池单体,相邻电池单体间及最外侧电池表面与箱体间隙填充相变材料;相变材料内布置热管构成相变材料热管耦合散热模块;热管冷凝端装有热开关,底部加装肋板,肋板伸出至风道;风道布置于箱体底部,利用汽车底盘处行驶时存在的自然风,无多余功耗;热开关由上部热管夹板和下部肋板配合而成,动作模式由均布在电池表面及相变材料间的温度传感器电控。本发明具有结构简单稳固、运行稳定性好等优点,能保持电池组温度在工作范围内且均匀性良好,电池组串并联后可适应不同电动设备要求,适用范围广。
本实用新型公开了新型电动汽车空调与动力电池热管理综合控制装置,其包括互相连接的升温系统和降温系统,所述的降温系统中,电动压缩机与冷凝器进液端连接,冷凝器的出液端分别与动力电池降温电磁阀和空调制冷电磁阀连接,将降温系统分为动力电池循环降温系统和空调循环制冷系统;所述的升温系统中,储液罐与电动泵进液端连接,电动泵的出液端分别与动力电池升温电磁阀和空调制热电磁阀连接,将升温系统分为动力电池循环升温系统和空调循环制热系统。本实用新型将动力电池的降温与升温功能和汽车空调的制冷与制热功能综合在一起,为一种结构简单、性能可靠的新型电动汽车空调与动力电池热管理综合控制装置。
本发明公开了一种新能源汽车的电池热管理装置,包括壳体(5)、安装于所述壳体(5)内且至少一节电池单体(1)、贴附于每节所述电池单体(1)两侧的散热板(2),所述散热板(2)包括相变材料散热板和对所述相变材料散热板进行散热的热管,所述热管包括蒸发段和冷凝段,所述蒸发段插设于所述相变材料散热板的内部,所述冷凝段位于所述相变材料散热板的外侧;还包括与所述冷凝段接触连接的液冷板(4)。该电池热管理装置有效地解决了新能源电池散热不佳及电池均温性差的问题。本发明还公开了一种包括上述电池热管理装置的新能源汽车,该新能源汽车具有上述有益效果。
本实用新型公开了电动汽车空调与动力电池热管理综合控制装置,其包括相互独立的升温系统和降温系统,所述的降温系统中,电动压缩机与冷凝器进液端连接,冷凝器的出液端分别与动力电池降温电磁阀和空调制冷电磁阀连接,将降温系统分为动力电池循环降温系统和空调循环制冷系统;所述的升温系统中个,储液罐与电动泵进液端连接,电动泵的出液端分别与动力电池升温电磁阀和空调制热电磁阀连接,将升温系统分为动力电池循环升温系统和空调循环制热系统。本实用新型将动力电池的降温与升温功能和汽车空调的制冷与制热功能综合在一起,为一种结构简单、性能可靠的电动汽车空调与动力电池热管理综合控制装置。