本发明公开了一种新能源汽车热泵 空调系统。其热源可随意组合变换,具有多种运行工况,可适用于混合动力汽车、电动汽车、燃料电池汽车或任意冷热源需组合变换、工况多样复杂的情形。通过阀门调节,其内部换热器、外部换热器及热交换器可相互组合充当热源或冷源,在满足乘员舱内的制热、制冷需求的同时,不影响其对动力系统进行散热 余热回收或加热等功能,并可以合理分配车内的热管理需求。整套热泵 空调系统可调控为6种运行模式,满足12种使用工况,其灵活性、集成度、适应工况以及热量调控分配能力相比于现有系统更强,使得车辆能够随意调控热管理系统以适应多变的工况,提升整车能量利用效率,具有较大的应用价值。
本申请涉及一种燃料电池汽车热管理方法。燃料电池汽车热管理系统包括燃料电池子系统、动力电池子系统、乘客舱供暖子系统和热交换控制子系统。所述方法包括检测当前环境温度T。当所述当前环境温度T≥所述动力电池子系统中动力电池需要保温和所述乘客舱供暖子系统需要供暖的环境温度阈值T1时,所述燃料电池汽车进入正常环境启动模式,否则,所述燃料电池汽车进入低温环境启动模式。所述燃料电池汽车热管理方法解决了在低温下燃料电池快速启动和动力电池保温的问题。
本发明提供了一种软包电池热管理和阻止热失控装置,用于对汽车中软包电池的表面温度进行智能调节控制并防止热失控的蔓延,包括:多个换热板,可拆卸地置于每个软包电池的两侧,内部设有通过换热介质的流动进行换热的散热器管路;进液集管段,与多个换热板连接,用于换热介质的流入;以及出液集管段,平行设置在进液集管段的下方,与多个换热板连接,用于换热介质的流出,其中,换热板由泡沫铝板和复合相变材料制成,复合相变材料填充在泡沫铝板中并与散热器管道嵌套成型,换热板上设有温度传感器与热流密度传感器,根据两种数据智能调控电池温度,当复合相变材料温度不变时,若热流密度急剧增加达到阈值,电池管理系统对电池进行断电处理。
本发明公开了一种锂电池火灾危险性综合测试系统及方法,属于新能源汽车领域,其中电动振动台的设计,既能够为锂电池组营造新能源汽车的行驶环境,也能够作为负载为锂电池组提供电源输出点;能够对多种不同规格的锂电池组进行火灾危险性进行分析,并预测使用寿命;以锂电池组的发热温度为基准,能通过空调降温系统对锂电池组进行适当降温,并对降温性能进行分析,从而能够分析控制锂电池组火灾发生的情况;以防爆测试箱作为锂电池组的火灾危险性测试环境,且防爆测试箱设计了带单向泄压阀的泄压管,确保锂电池组的整个测试过程是安全的,避免爆炸风险;测试结果能够为锂电池组的热管理系统的改进提供依据,利于安全、可靠的新能源电动汽车的设计。
本发明涉及汽车零部件结构技术领域,具体地指一种具有电池热管理系统的电动汽车机舱布置结构。包括对电池包进行降温的冷却系统以及升温的加热系统;冷却系统包括,冷却除气室、第一板式换热器和冷却水泵;加热系统包括,空调除气室、PTC加热器、加热水泵和第二板式换热器;冷却除气室、第一板式换热器、第二板式换热器和冷却水泵通过第一管路结构依次串联成闭路冷却系统;空调除气室、PTC加热器、加热水泵、第二板式换热器通过第二管路结构依次串联成闭路加热系统。本发明的电池热管理系统结构简单,空间优化合理,整体安装方便、定位可靠,装配精度高、模块化程度高。
本发明提供了一种移动式动力电池热管理系统检测装置,用于检测并评估动力汽车的动力电池的热安全性,包括:数据检测模块,包括温度传感器、热流密度传感器、蓝牙发射器以及用于接收并传输温度参数和热流密度参数的数据接收传输器;数据储存模块,用于接收并储存温度参数和热流密度参数,并将温度参数和热流密度参数上传至云端;以及综合评价模块,包括用于初步计算处理得到平均温度的第一数据处理器、用于初步计算处理得到平均热流密度和平均热流密度斜率的第二数据处理器、用于进行综合计算的综合数据处理器以及评价输出显示屏。本发明还提供了一种基于移动式动力电池热管理系统检测装置的检测评估方法来评价动力电池的热安全性。
本实用新型属于发动机技术领域,公开了一种可变气门控制装置,包括连接于气门推杆的第一柱塞,正对所述第一柱塞且相对于第一柱塞可移动的第二柱塞,套设于第一柱塞和第二柱塞外的柱塞套,连接于第二柱塞的滚轮,以及能推动所述滚轮及所述第二柱塞移动的凸轮,第一柱塞、第二柱塞以及柱塞套之间形成有稳压腔,柱塞套上开设有贯穿侧壁的油孔,第二柱塞靠近第一柱塞的一端端部开设有连通稳压腔的螺旋槽,螺旋槽对应油孔设置,且柱塞套相对于第二柱塞转动时,油孔对应螺旋槽的不同位置。本实用新型能够实现进排气门升程及配气相位连续可变,并实现柴油机后处理热管理、米勒循环及排气制动功能。
本申请提供了一种汽车的热管理装置的控制方法、控制装置、存储介质,控制方法包括:确定车舱需求的运行模式;确定电池需求的运行模式;根据车舱需求的运行模式和电池需求的运行模式控制热管理装置进入对应的运行模式,控制热管理装置进入对应的运行模式包括:至少控制冷暖风门处于全冷模式、全热模式或者关闭模式,且控制水泵处于打开状态或者关闭状态。根据车舱需求的运行模式和电池需求的运行模式控制热管理装置进入对应的运行模式,可以实现车舱制冷、电池冷却、车舱制冷+电池冷却、车舱制热、电池加热、车舱制热+电池加热、车舱制热除雾以及电池冷却和车舱制热共八种运行模式。
本发明公开了一种基于低温平面热管的多级加热装置及加热控制方法,包括:加热水管、低温平面热管、加热片、导热垫、隔热套。低温平面热管插入加热水管;在加热水管的外部低温平面热管段两端各布置一个加热片,所述加热片所产生的热量能根据分配得到的加热功率进行调节;在加热片的外层安装布置一个隔热套,以减少加热片产生的热量与空气接触产生热量的损失;低温平面热管的中间部分上面布置导热垫,导热垫上安装电池模组,提高电池模组和低温平面热管的导热能力,保证电池模组加热时间。在使用时,通过热管理控制装置实时监测电池模组的温差以调整加热功率使电池模组受热均衡,再根据理论加热时间实时分配总功率以调节电池模组的实际加热时间。
本发明公开了一种燃料电池汽车热管理系统,包括:燃料电池电堆;水箱,所述水箱内填充有冷却水;第一换热器,用于通过第一蒸发器对车厢进行供暖;温度调节装置,用于对蓄电池进行温度调节,以使所述蓄电池工作在预设工作温度范围内;控制器,用于控制所述第一换热器和所述温度调节装置的工作状态;其中,所述燃料电池电堆、所述水箱、所述第一换热器和所述温度调节装置连接。本发明具有如下优点:燃料电池采用水冷方式控制燃料电池工作在合适温度,利用燃料电池工作时产生热量以及辅助电加热器产生的热量,用于车辆冬季供暖,同时用于锂离子电池在冬季的保温。
本发明提供了一种整车能量流测试系统及方法,涉及整车能量流测试技术领域。该整车能量流测试系统包括上位机和与上位机通信连接的数据采集单元,数据采集单元用于同步采集并记录整车的多个子系统的实时数据,并将实时数据传递至上位机。上位机用于接收并监测实时数据,以获取整车级能量流。该整车能量流测试系统能够实现整车级的能量流测试,了解分析整车在不同使用环境、不同使用工况下能量流情况,从而为整车各系统、各部件效率优化及降低整车能量消耗率提供依据和支撑,提高整车系统集成匹配能力,优化整车架构及整车控制策略。
本发明公开了一种用于燃料电池系统的集成式多通接头控制阀,涉及车用燃料电池系统的技术领域,解决了现有技术集成度不高、不便于布置的技术问题。它包括流量控制阀,所述流量控制阀上集成设有电堆后多通接头和水泵多通接头,所述电堆后多通接头分别与电堆的一端、客舱加热器的一端、阴极热交换器的一端、阳极热交换器的一端和散热器的一端连接,所述水泵多通接头分别与客舱加热器的另一端、阳极热交换器的另一端和冷却液循环泵的一端连接。本发明结构合理、集成度高、便于布置,有效的减少了布置空间,且还避免了冷却液流过汇合处压力降较大的问题,有效的提高了热管理子系统的工作效率。