本发明公开了一种锂离子电池组温度预警装置,包括温控装置、电池组和电子控制单元ECU;电池组包括N个锂离子电池,温控装置固定在锂离子电池的单体表面、泄压阀以及极柱的其中一个位置上;一种锂离子电池组温度预警方法,包括以下步骤:S1:当N个温控装置的温度都未到达融化低熔点合金件的熔点温度T_(off)时,ECU的P1口保持低电平;解决了锂离子电池因内短路引起的热失控现象,造成电池冒烟、着火、甚至爆炸、危害人身财产的问题。
本发明公开了一种便携式燃料电池系统及其实现方法。本发明采用嵌套的外壳体和内壳体构成容纳腔,阴极气体管道设置在容纳腔内;在内壳体底部设置燃料重整装置,顶端设置尾气燃烧装置,在燃料重整装置外套设同轴的阳极流道外壳体构成阳极流道;阳极流道外壳体与内壳体之间形成阴极气体腔;在阴极气体腔内设置电池堆,并连通至阳极流道;电池反应放出热量为燃料重整装置提供高温边界,减少放热损失;尾气燃烧装置处理电池尾气产生的高温燃烧废气经容纳腔与阴极气体管道发生热交换,为电池堆提供高温边界,减少电池堆放热损失;本发明能够提高电池性能;结构紧凑,且对外换热损失小,减少隔热材料使用,从而降低系统质量和体积,更适合便携式应用。
本发明提供了一种应用数字孪生技术的锂离子电池充电及热管理方法,通过建立电池的数字孪生体适应电池状态、工作环境的改变情况,并针对充电或热管理策略中参数变化的短期及长期影响进行预测。结合管理目标及限制条件,优化了充电及热管理方法,从而能够实现适用于不同电池类型、不同环境下的全寿命周期充电及热管理优化。
本发明公开了一种适用于地外空间的生态圈培养方法,选择生物品种、构建生物生存生长环境,包括封闭大气的空间、基底条件、温度、光照、水分等,并在地外空间形成生态系统;本发明在地球外星体上能够创造出并模拟相对适应生物生长或者培育的环境,为地外空间生态培养提供条件,并能够形成地外空间的生态圈,保证地外空间生物实验过程的顺利进行;本发明的系统初步实现人类在地球以外星体上生物试验,对人类今后建立月球的其他星体基地提供研究基础和经验,具有重大理论和实践意义。
本发明公开了一种适用于地外空间的生物培养的环境形成装置,包括壳体和设置于所述壳体上部空间的生物舱,且壳体的上部还设有用于从外界导入生物生长用光的光管理系统;壳体上还设有用于至少保持上部空间温度的热管理系统和用于为生物生长提供生长用水的供水系统;本发明在壳体的适当部位配备有生物舱等结构,在地球外星体上能够创造出并模拟相对适应生物生长或者培育的环境,为地外空间生态培养提供条件,能够形成地外空间的生态圈,保证地外空间生物实验过程的顺利进行;本发明的装置结合相应的培养基底以及监控系统,可初步实现人类在地球以外星体上生物试验,对人类今后建立月球的其他星体基地提供研究基础和经验,具有重大理论和实践意义。
本发明涉及新能源电动汽车动力电池的换热装置,包括电池单体和电池组箱体。电池箱体上均布四个流体进出口①,②,③,④,换热流体以一定的时间间隔依次循环反复地从四个进出口进入并从对角进出口流出,从而减弱因流体进出口温差引起的各个单体电池间温度不一致问题。本发明作为一种动力电池组换热装置,在强化电池散热的同时也能够很大程度上保证各个电池单体的热均衡性,从而有效控制电池温度和提高电池的一致性。
本发明涉及一种电动汽车动力电池的换热装置,包括电池组箱体、单体电池套管和中间肋板。箱体内竖直排列多个单体电池套管,单体电池放置在套管内,电池和套管内壁之间填充绝缘导热材料。在电池组箱体内横向排布多块横向肋板以提高整体散热面积。同时,横向肋板把电池箱体内部冷却流场分隔成多层流道,相邻流道内的冷却流体流向相反,提高电池性能的一致性。本发明作为一种电动汽车电池组换热装置,在强化电池散热的同时也能够很大程度上保证各个电池单体的热均衡性,从而有效控制电池温度和提高电池的性能一致性。
本发明提供了一种电动车辆动力电池组液流热管理装置、管理系统及其控制方法,动力电池布置在传热隔板组之间,传热隔板与动力电池紧密贴合,传热隔板内设置有传热工质流道,传热隔板组与左立板、右立板连接,并与两立板内侧凹槽形成一个密闭的空间,密闭空间通过左立板的进液管道口,经过电加热器与传热工质泵连通,且通过右立板的出液管道口与热交换器和备用液流箱连通,在电池组的进液流道口和出液流道口设置有温度传感器,电池管理系统读取温度传感器数据对流入传热隔板的传热工质进行温度控制。本发明解决了动力电池组的有效散热与加热保温问题,提高了热交换效率、保证动力电池在充放电过程中温度一致性,延长了动力电池组的使用寿命。
本实用新型涉及一种电池热管理装置,具体涉及一种锂离子电池组热管理装置。基于PTC电阻带加热的锂离子电池组热管理装置,其技术方案是,铝板(5)上设有若干开槽,铝板(5)与锂离子电池(4)最大表面积一侧贴合;PTC电阻带(3)嵌入铝板(5)并缠绕在锂离子电池(4)表面;温度采集单元(6)布置在单体锂离子电池(4)上采集温度,并将采集到的温度信息上报至电池从控单元(8);电池主控单元(9)接收电池从控单元(8)上报的温度信息,对配电单元(2)进行管理,或对电池从控单元(8)下达开启风扇(7)的控制信号;本实用新型加热功率调节方便、加热和散热集成度高。
本发明涉及一种电池热管理装置,具体涉及一种锂离子电池组热管理装置。基于PTC电阻带加热的锂离子电池组热管理装置,其技术方案是,铝板(5)上设有若干开槽,铝板(5)与锂离子电池(4)最大表面积一侧贴合;PTC电阻带(3)嵌入铝板(5)并缠绕在锂离子电池(4)表面;温度采集单元(6)布置在单体锂离子电池(4)上采集温度,并将采集到的温度信息上报至电池从控单元(8);电池主控单元(9)接收电池从控单元(8)上报的温度信息,对配电单元(2)进行管理,或对电池从控单元(8)下达开启风扇(7)的控制信号;本发明加热功率调节方便、加热和散热集成度高。
本发明涉及一种基于人工神经网络的二次电池表面最高温度预测方法,属于电池热管理系统技术领域。将二次电池置于高低温试验箱内,连接上充放电试验机;电池放电后进行充电;监测电池在充电过程中表面最高温度的变化情况;通过设定Back-Propagation神经网络模型的输入、输出、神经元个数、层数、传递函数和训练算法来完成模型的构建;将数据用于模型训练,使模型能够运用于预测;电池在其他环境温度下充电过程中的表面最高温度通过模型进行预测。本发明的模型应用起来简单易行,参数容易控制,结果具有实用价值;电池在不同环境温度下工作时的表面最高温度得以预测,为电池热管理系统的有效工作和电池的安全提供了保证。