本发明公开了一种动力电池包及具有其的车辆,包括:第一层单体电池组和第二层单体电池组,所述第二层单体电池组与所述第一层单体电池组层叠设置;热管理组件,所述热管理组件设于所述第一层单体电池组和所述第二层单体电池组之间,且具有靠近所述第一层单体电池组的第一换热腔和靠近所述第二层单体电池组的第二换热腔,所述第一换热腔和所述第二换热腔连通。根据本发明的动力电池包,通过在第一层单体电池组和第二层单体电池组之间设置热管理组件,且热管理组件设有第一换热腔和第二换热腔,使热管理组件能同时对第一层单体电池组和第二单体电池组进行换热,且热管理组件的结构简单、紧凑,从而方便热管理组件在电池包内的布置。
本公开公开了一种汽车用空调集成燃料电池热管理系统及控制方法、装置,该系统包括:控制单元,所述控制单元分别与空调制冷系统、燃料电池冷却液循环系统和燃料电池组连接;所述空调制冷系统与燃料电池冷却液循环系统通过板式换热装置连接,进行热量交换;所述燃料电池冷却液循环系统与燃料电池组连接,所述控制单元采集燃料电池组数据控制所述燃料电池冷却液循环系统对燃料电池组进行低温冷启动预热,以及控制空调制冷系统与燃料电池冷却液循环系统冷却燃料电池组。
本发明公开了一种户外电池热管理的系统,包括控制器、半导体制冷器、半导体制热器、箱体和相变材料。本发明结构简单,成本低,基于锂离子电池发热量不均匀、温度差异较大的现象,采用分区域热管理的方法,将相变材料和液体冷却相结合,主被动结合,同时具备散热、加热和保温功能,实现了对方型锂离子电池组内温度的精确控制,在低温条件下对电池有效加热,使电池组工作在适宜的温度下,保证电池组正常工作;能够有效提高电池安全性、延长电池使用寿命;保证电池热管理系统长期高效的运行,同时提高了热管理系统的经济性。
本实用新型属于汽车热管理控制技术领域,具体涉及一种乘用车热管理控制阀监测及控制系统,热管理控制阀包括电子执行器和三通阀,控制器分别与顺序、周期限定模块一和顺序、周期限定模块二连接,所述的顺序、周期限定模块一分别与三通阀角度采集模块、发动机冷却液温度采集模块、三通阀目标角度控制模块、三通阀电机控制模块连接并限定其动作顺序和周期;所述的顺序、周期限定模块二分别与发动机信息采集模块、目标水温控制模块连接并限定其动作顺序和周期,该系统通过监测到的数据分析计算出三通阀内球阀应该转多少角度,从而合理的分配冷却液的流量达到控制汽车水温的目的,让汽车在一个更加经济的车况下运行,实现发动机最省油的目的。
本发明公开了一种基于EDLC模块化电动车高功率储能与热管理系统,包括电机模块、集成电源分配模块、储能供电模块及外部电源,所述电机模块包括驱动轮及电机,所述电机用于电能与动能之间的相互转化;所述集成电源分配模块包括第一逆变器、功率转换器及第二逆变器,用于充电功率转换及交流直流相互转化;所述储能供电模块包括超级电容器、锂电池、泵及散热器,用于电能的储放转化及换热。本发明的有益效果是:应用超级电容器替换普通电容器具有充放电功率大且能量密度也不低的优点,在制动汽车时能够回收更多的能量,加速时也能够均衡高效地实现电能转换,提高了系统能量利用效率。
具有包含水合沸石材料(170)和石英砂(172)的填充物材料的电力熔丝促进了减小封装大小的电熔丝的增加功率密度。所述水合沸石材料释放水以冷却且抑制较高功率电路中经历的电弧条件。熔丝元件(158)形成为具有若干孔口(162)的平面条带(160),所述孔口界定减少的横截面积的区域(162),所述区域充当弱点以促进电弧划分。
本实用新型公开了一种动力电池包热管理机构,包括电池模组、集成式液冷板和PCT加热结构,集成式液冷板的一侧与电池模组连接,PCT加热结构连接在集成式液冷板的另一侧,PCT加热结构包括PCT加热器,PCT加热器贴合在集成式液冷板上。电池模组与集成式液冷板之间设有导热垫。本实用新型的热管理机构集成液冷和加热功能,液冷主要通过集成式液冷板中冷却液的循环流动将电池模组充放电过程中产生的热量带到电池包外部进行散热;加热功能主要将PTC加热器产生的热量传到集成式液冷板的铝板,使集成式液冷板整体受热,然后热量通过集成式液冷板上方的导热垫传递到电池模组,温升速率较高,由于集成式液冷板整体受热再进行传递使得电池模组的温升一致性较好。
本发明是一种汽车热管理系统及汽车,涉及汽车技术领域,为解决现有混合动力汽车热管理系统结构复杂,致使整车制造成本较高的问题而设计。该汽车热管理系统包括电池热管理回路和电驱热管理回路。电池模块、第一换向阀、换热器和第二换向阀依次串联设置在电池热管理回路中,流经电池模块的冷却液经过换热器进行热交换;电驱模块、第一换向阀、电驱散热件和第二换向阀依次串联设置在电驱热管理回路中,流经电驱模块的冷却液经过电驱散热件进行热交换。该汽车包括上述汽车热管理系统。本发明提供的汽车热管理系统及汽车用于实现高温环境下对电池模块、电子增压器、电机和电机控制器的高效冷却,以及低温环境下对电池模块的热补偿。
本发明公开了一种基于相变微胶囊悬浮液的锂离子电池组热管理的系统和方法。该系统包括箱体和设置于箱体内并排竖直放置的方型锂离子电池单体组成的锂离子电池组,锂离子电池组一侧设有液体入口管,另一侧设有液体出口管,箱体内还设置有微通道金属板,微通道金属板和锂离子电池单体间隔竖直排列,锂离子电池组内设置有温度传感器,箱体外部设置有控制器、水泵、加热器、散热器和制冷器。本发明利用了相变微胶囊悬浮液相变潜热大、微胶囊相变过程温度恒定、悬浮液在水泵的作用下可以对流换热的特点,将相变微胶囊悬浮液用于电池热管理,主、被动热管理相结合,兼具加热和冷却功能,实现了对锂离子电池组内温度的精确控制。
本发明公开了低温续驶里程衰减整车热管理设计目标分解模型与分析方法,步骤如下:获取或计算建模所需的参数,车型的滑行阻力曲线,车身质量,轮胎尺寸,能量回收策略,电机效率;计算车型的整车动力性经济性参数;获取电池包库伦效率,电芯电压温度衰减系数,电芯电量温度衰减系数,电芯的热功率,电池包预设质量,前舱风扇功耗,空调鼓风机功耗,电器组件功耗车型开发的长宽高预设值;建立整车设计目标向热管理系统的设计目标分解模型;建立整车功耗分解到热管理系统功耗的分解模型;根据获取参数,按照能耗为主线,进行空调热管理系统的性能目标分解计算;计算得到的整车热管理系统设计目标通过功耗校核验证分解方案的可行性。
本发明提供了一种具备电池热管理功能的双系统电车空调,属于空调系统技术领域,包括安装在壳体内两个压缩机、两个四通换向阀、两个蒸发器芯体、两个冷凝器芯体以及两个膨胀阀,所述壳体内设有将所述壳体分为第一区与第二区的第一隔板,所述第二区内设有将所述第二区分为蒸发腔和冷凝腔的第二隔板。每个所述压缩机与一个四通换向阀、一个蒸发器芯体、一个冷凝器芯体以及一个膨胀阀独立、完整的制冷系统。所述第一区中安装有换热器,所述第二区中安装有蓄水箱,所述蓄水箱与换热器连通。该空调结构紧奏、占用空间少、重量轻,而且可以利用空调蓄水箱中的冷却液对电车电池进行降温,使电车整车耗能更低。
本发明涉及分别用于电动车轮的用户接口、扭矩臂组件、组装辐条车轮的方法、电池维护方法以及用于热管理的方法。