本发明公开了一种双向流电池热管理系统及电池热调节方法。双向流电池热管理系统包括:电池组的保护壳体、风道、散热翅片组、处理器模块、散热风扇和半导体制冷制热片;保护壳体上下表面均设置有金属网和风道,风道中间用隔板隔开形成双风道,双风道内侧均安装有所述半导体制冷制热片;半导体制冷制热片的冷面和热面两侧均固定有所述散热翅片组;风道的进风口处安装有散热风扇;处理器模块根据检测到的电池温度,实时控制半导体制冷制热片和散热风扇的工作状态。通过本发明满足了各单体电池间的均温性,解决了现有技术中电池组因散热问题产生的使用可靠性和稳定性较差的问题。
本发明公开了一种基于三维均温板的电池热管理装置,包括控制器、外壳、温度传感器,所述外壳的开口处设置有开度可调节的开关门,所述外壳内设置有三维均温板,所述三维均温板包括空心底板和竖直地平行间隔设置在所述底板上的若干空心分支板,底板的内腔与各分支板的内腔相连通,所述电池包放置在各分支板与所述底板合围的各空间内;所述底板的底面贴合地设置有冷热两用温控装置;所述的三维均温板前后两侧设置有散热翅片,所述控制器电路连接温度传感器、开关门等。本发明可根据工况对电池模组进行节能散热或预热。电池与三维均温板之间设置的相变材料可快速吸收热量,提高均温性和安全性的同时,采用半导体制冷片时可以进行余热发电。
本申请公开了风能变流器散热方法、散热装置和散热系统,其中,该风能变流器散热方法,包括:预测风能变流器所在的风力发电机组的发电功率;确定风能变流器中功率器件在所述发电功率下的预期运行温度;获取风能变流器中功率器件的实际运行温度;判断所述实际运行温度是否超出允许的波动范围,所述波动范围根据所述预期运行温度设置;当判断得到所述实际运行温度超出所述波动范围时,调节风能变流器中散热系统的散热效率,直至所述实际运行温度稳定在所述波动范围内。本申请使热设计兼顾考虑风能变流器中功率器件在实际运行过程中的温度周次,从而提升了功率器件的寿命。
本发明公开了一种高效节能的电池模组热管理装置,包括控制器、外壳、箱体、温度传感器,相邻电池的各间隙中设置有若干热管支路,所述热管支路的下端穿过箱体底部并连通设置有空心的均温板,所述均温板的底面贴合地设置有冷热两用温控装置;所述箱体内填充设置有相变材料,所述热管支路的上端穿过箱体的上盖并依次穿接有若干翅片,所述外壳上相对翅片的位置设置有开度调节的开关门,所述控制器通过电路连接温度传感器、开关门、冷热两用温控装置。本发明可根据工况对电池模组进行节能被动的风冷散热,电池温度较高时加入水冷或半导体制冷片强化散热,电池与热管支路之间设置的相变材料可快速吸收热量,提高均温性、安全性和整体续航能力。
本发明公开了一种质子交换膜燃料电池热管理系统,包括:散热装置,包括微通道热沉、超薄均温板蒸发腔组件和密封板,微通道热沉包括壳体和散热翅片阵列,超薄均温板蒸发腔组件包括底板和毛细芯,毛细芯一端与微通道热沉的基部直接接触,底板与基部之间形成蒸发腔,超薄均温板蒸发腔组件与密封板分别密封连于微通道热沉两端;通过至少两个单体电池以串联方式层叠组合而成的燃料电池堆,每个单体电池的一侧对应设有散热装置,且单体电池与散热装置间隔叠设;冷却液分配管;冷却液集液管;用于供应冷却液并控制冷却液流动的控制系统。该质子交换膜燃料电池热管理系统能够保证燃料电池在运行过程中处于合适的温度范围内以及燃料电池内部的均温性。
用于并入半导体装置组合件的半导体装置封装可包含衬底,所述衬底包含定位在所述衬底的下表面上的导电元件的阵列。窗可从所述衬底的所述下表面到所述衬底的上表面延伸穿过所述衬底。所述导电元件的阵列可至少部分侧向围绕所述窗的周边,且所述衬底可侧向延伸超过所述导电元件的阵列。半导体装置可围绕所述导电元件的阵列的周边支撑在所述衬底的所述上表面上。所述半导体装置可通过从所述半导体装置朝向所述窗的延伸的布线元件而电连接到所述阵列的至少一些所述导电元件。
一种淋浴装置的自动化系统,包括:用于针对特定用户或特定配置设定个性化淋浴程序的部件;专用于身体的不同部位的淋浴喷头(200,206)或水分配器的选择性控件;用于数字检测和控制水或空气的温度的部件;以及可调排水处理系统。可调排水处理系统可以选择地包括用于将废水抽到厕所、容器或下水道的部件。
本发明提供了一种混合动力商用车动力电池热管理系统,动力电池包、三通阀、水泵和PTC加热器形成动力电池加热循环回路,动力电池包、三通阀、动力电池散热器、动力电池冷却器、水泵和PTC加热器形成动力电池水冷循环回路,冷凝器、电子膨胀阀、动力电池冷却器、电动压缩机形成动力电池空调系统冷却循环回路,冷凝器、截止阀、HVAC蒸发器和电动压缩机形成空调系统驾驶舱冷却循环回路,动力电池空调系统冷却循环回路与动力电池水冷循环回路在动力电池冷却器内互不干涉。还提供一种混合动力商用车动力电池热管理方法。本发明系统结构简单,冷却、加热效果好,其热管理方法简单。
本发明提供流路切换阀。流路切换阀具有:阀芯(302),该阀芯(302)具有阀芯外周面(302a);阀主体(32),该阀主体(32)具有与阀芯外周面相对且面向阀室(321)的主体内周面(322);以及密封部件(34),该密封部件(34)在阀径向上夹在阀芯外周面与主体内周面之间。密封部件具有:第一密封部(341)、第二密封部(342)、以及将该第一密封部和该第二密封部连结起来的连结部(345)。第一密封部以围绕第一开口孔的主体内周面侧的周缘(322a)的方式延伸配置,第二密封部以围绕第二开口孔的主体内周面侧的周缘(322b)的方式延伸配置。连结部配置于在周向上第一密封部与第二密封部的彼此间隔(A1)最小的位置。而且,连结部的第一连结端部(345a)和第二连结端部(345b)分别由于被阀芯外周面向阀径向的外侧挤压而发生弹性变形。
本发明公开的是一种电池模组导热板排布优化方法,所述排布优化方法包括以下具体步骤:步骤一:电池模组由N个电池单体组成,电池单体与单体之间留一定的空隙,从电池模组外侧至模组中心的空隙逐渐增大;步骤二:以电池使用工况的电流大小和使用时间为依据,以步骤一中电池单体与单体之间的空隙以及电池单体与模组箱体之间的空隙为变化参数搭建热仿真模型;步骤三:分别计算电池单体纵向和横向的热导率。本发明不仅可以在不增加工艺复杂性的情况下合理布局板材,减轻动力电池模组的重量,而且可以增加电池模组的散热能力。
本实用新型涉及混合动力汽车及其热管理系统,包括空调制冷循环回路、电机换热支路、电池换热支路和发动机换热支路,其中,空调制冷循环回路包括压缩机、冷凝器、蒸发器和换热器,换热器的第一组接口用于连接蒸发器,电机换热支路、电池换热支路、发动机换热支路并联连接并通过水阀连接换热器的第二组接口。本实用新型通过控制空调制冷循环回路实现车内制冷,通过空调制冷循环回路和电池换热支路实现电池制冷,通过空调制冷循环回路和电机换热支路实现电机制冷,通过电池换热支路和发动机换热支路,实现利用发动机余热为电池加热,通过电机换热支路和电池换热支路,实现利用电机的余热为电池加热,实现了整车能量的高效利用。
本实用新型提出一种全气候整车多热流集成热管理系统,包括动力电池支路、空调支路和燃料电池支路,其特征在于,所述动力电池支路、空调支路和燃料电池支路并联后串接热流干路,所述热流干路串设散热器和水泵,动力电池支路、空调支路和燃料电池支路为独立的、通断可控的支路。该系统不仅实现热量的统一管理,还节省了系统的成本,提高能量的利用率。