本发明属于液体燃料电池领域。本发明涉及一种液体燃料电池系统低温快速启动方法,其特征是采用甲醇、乙醇等有机小分子物质为燃料,在催化燃烧器中进行催化燃烧,燃烧产生的热直接或间接通过电堆加热室为电堆加热,和 或为系统内水热管理部件加热,从而实现液体燃料电池系统低温快速启动。与现有技术相比,本发明有利于液体燃料电池系统在低温下启动,提高液体燃料电池的低温环境适应性,拓展了其应用范围。
本发明公开了一种用于电动汽车的热管理系统,包括空调热泵系统和电池电机热传导系统;空调热泵系统包括压缩机、车舱冷凝器、第一舱外换热器、车舱蒸发器、第一换热器、蓄热器、气液分离器和若干阀体;电池电机热传导系统包括电池换热模块、电机换热模块、液体泵、第二舱外换热器、第二换热器和若干阀体;空调热泵系统和电池电机热传导系统通过蓄热器和第一换热器进行能量的储存和交换。本发明可以使电动汽车实现制冷、采暖、除湿以及电池和电机的散热等多种热管理模式,在节约能源的基础上保证车舱的舒适性和电池、电机的安全性。
本发明公开一种阵列式棒状激光放大器,由泵浦源、耦合透镜组、组合式激光增益介质、机械结构四部分组成。本发明采用阵列式小口径棒状激光增益介质,避免了激光增益介质尺寸受限的问题,且棒的数量可根据能量需求调整,具有灵活性。激光增益介质棒水平方向侧面间胶合可吸收放大的自发辐射且热导率高于增益介质的材料,竖直方向侧面间为冷却液体流道,采用这种方式可提高热管理效果。通过合理设计增益介质的形状,可降低自发辐射及寄生振荡的影响。本发明具有系统结构紧凑、辅助循环系统简单、可靠性好、效率高的特点。
本发明公开了一种电动汽车热管理系统,包括空调热泵系统和电池电机热传导系统;空调热泵系统包括压缩机、车舱冷凝器、第一车头换热器、车舱蒸发器、换热器、蓄热器、气液分离器和若干阀体;电池电机热传导系统包括电池换热模块、电机换热模块、液体泵、第二车头换热器、蓄热器、换热器和若干阀体;空调热泵系统和电池电机热传导系统通过蓄热器和换热器进行能量的储存和交换。本发明可以使电动汽车实现制冷、采暖、除湿以及电池和电机的散热等多种热管理模式,在节约能源的基础上保证车舱的舒适性和电池、电机的安全性。
本发明公开了一种燃料电池热管理系统,包括:内循环回路和外循环回路;其中:内循环回路包含燃料电池电堆,外循环回路不包含燃料电池电堆,内循环回路和所述外循环回路通过热交换器相连。本发明通过内循环回路和外循环回路构成的多回路结构,可以满足燃料电池复杂的工况需求,能够快速实现燃料电池系统热平衡,保障燃料电池工作在最佳温度范围内。本发明还公开了一种燃料电池热管理方法。
一种电池热管理系统,包括电池模组、热管单元、加热单元和压缩制冷单元;其中热管单元包括若干热管,所述热管具有热管热端和热管冷端;电池模组与热管热端的一表面热耦合;加热单元与热管热端的另一表面热耦合,通过加热单元来给所述电池模组升温;热管冷端与压缩制冷单元的蒸发器冷管表面热耦合,通过压缩制冷单元来使所述电池模组降温。本实用新型的热管理系统内无防冻液流动,去掉了液冷装置,从根本上避免了冷却液泄漏,且通过热管具有的均温作用,避免了相对复杂的串并联管路系统。
本发明涉及一种动力电池系统火灾风险检测方法、装置及计算机设备,该方法包括:接收火灾风险检测请求;根据火灾风险检测请求获取动力电池系统的火灾风险检测参数;根据火灾风险检测参数从预设的算法子程序集群中调用第一算法子程序;通过第一算法子程序对火灾风险检测参数进行处理,获得动力电池系统的火灾风险等级;将火灾风险等级发送至终端,以使终端显示火灾风险等级。本发明能够基于动力电池系统的火灾风险检测参数,获得动力电池系统的火灾风险等级,将动力电池系统的火灾风险进行量化,便于对动力电池系统的安全性进行技术改进,还能进行安全监测,降低因动力电池系统火灾造成电池汽车起火事故的风险。
一种电池热管理系统,所述系统包括电池模组、热管单元、加热单元、主冷却系统和副冷却系统;其中热管单元包括若干热管,其中每一热管包括热管热端和热管冷端;电池模组的一个端面与所述热管热端的一表面热耦合;加热单元与热管热端背对电池模组的表面热耦合;热管冷端分别与所述主冷却系统和副冷却系统的表面热耦合。本实用新型可以根据环境温度灵活启动其中一个冷却系统实现对电池模组的冷却,从而尽可能多的节省用于冷却电池所耗的电能,且整个热管理系统内可以避免使用防冻液,能最大程度降低循环水泵或制冷压缩机的开启功耗,使新能源汽车的电量最小程度的消耗于给电池模组降温。
本发明公开了一种电动汽车多源热管理系统,包括车内自然压缩制冷 制热流路、发动机自然压缩制冷 制热流路、电池包自然压缩制冷 制热流路、车内余热压缩制热流路、车内余热制热流路、电制热流路、发动机自然换热降温流路、电池包自然换热降温流路以及配套的阀门、泵和控制系统。本发明将发动机和电池包产生的余热热源、电加热直接生产的热源、自然环境的冷 热源、电驱动压缩机产生的冷 热源等多个能源源头进行耦合联动,分别基于各个冷热需求部分的温度要求综合调控不同冷热源的冷热输出,减少制冷时的压缩机启动时长和制热时的电加热器的启动时长,进而减少冷热输出的耗电量,提高电动汽车的行驶里程和使用寿命。
一种电池热管理系统及方法,所述系统包括电池模组、热管单元、加热单元、主冷却系统和副冷却系统;其中热管单元包括若干热管,其中每一热管包括热管热端和热管冷端;电池模组的一个端面与所述热管热端的一表面热耦合;加热单元与热管热端背对电池模组的表面热耦合;热管冷端分别与所述主冷却系统和副冷却系统的表面热耦合。本发明可以根据环境温度灵活启动其中一个冷却系统实现对电池模组的冷却,从而尽可能多的节省用于冷却电池所耗的电能,且整个热管理系统内可以避免使用防冻液,能最大程度降低循环水泵或制冷压缩机的开启功耗,使新能源汽车的电量最小程度的消耗于给电池模组降温。
本发明的电动车电池热管理装置,具备:电池包;置于所述电池包内的电池电芯;与所述电池电芯紧密贴合的热电器件;一端与所述热电器件连接的至少一个以上的导热弹簧;与所述导热弹簧的另一端抵接且位于所述电池包顶部进行封闭的换热金属板。根据本发明,可不通过媒介直接对电池电芯冷却和预热,结构简单,能量利用效率高,可靠性高,成本低,使电池包在不同环境工况下工作在最合适的温度范围,延长电池包的使用寿命,延长纯电动车续航里程。
一种电池热管理系统及方法,该电池热管理系统包括电池模组、热管单元、加热单元和压缩制冷单元;其中热管单元包括若干热管,所述热管具有热管热端和热管冷端;电池模组与热管热端的一表面热耦合;加热单元与热管热端的另一表面热耦合,通过加热单元来给所述电池模组升温;热管冷端与压缩制冷单元的蒸发器冷管表面热耦合,通过压缩制冷单元来使所述电池模组降温。本发明的热管理系统内无防冻液流动,去掉了液冷装置,从根本上避免了冷却液泄漏,且通过热管具有的均温作用,避免了相对复杂的串并联管路系统。