本发明涉及并公开了三维打印工艺、旋动装置和热管理工艺。三维打印工艺包括将材料分配到选定区域,选择性地对材料进行激光熔化,以及用该材料形成旋动装置。通过选择性激光熔化来打印旋动装置。热管理工艺包括提供具有通过选择性激光熔化来打印的旋动装置的物件,以及通过运送空气经过旋动装置来冷却该物件的一部分。
公开了用于在便携式计算设备(“PCD”)中实现的自适应热管理技术的方法和系统的各个实施例。值得注意的是,在许多PCD中,与PCD中的各个部件相关联的温度阈值,诸如但不限于管芯结温、封装体叠层(“PoP”)存储器温度和设备本身的外部表面的触摸温度限制了PCD性能能力可以被利用的程度。用于自适应热管理的方法和系统的各个实施例的优势在于,当违背了温度阈值时,在准许热侵害型处理部件返回到最大操作功率之前至多只需牺牲使得所述违背被清除的PCD性能。
本发明描述了一种用于蓄电池单元(23)的冷却系统,其中蓄电池组(22)的蓄电池单元由壳体(22a)包围并且该壳体在一侧上与外部冷却系统连接并且与之相互热作用。外部冷却系统在此被冷却剂流过。通过蓄电池组和冷却系统的提出的设置确保了外部冷却系统的冷却剂在泄漏的情况下也不能够到达蓄电池壳体中。
一种用于确定是否执行针对电子装置的维护的方法,包括在基线日期为电子装置的发热部件生成热性能的基线表征。该方法还包括在基线日期后的评估日期生成热性能的评估表征。该方法进一步包括生成包括基线表征和评估表征的历史趋势。另外,该方法包括基于历史趋势和指定的维护参数确定是否执行针对发热部件的维护。
一种通过分析从电源接收的信号而检测驱动LED的电源的类型的电路。该电路基于所确定的类型控制LED的行为,诸如对调光器或热条件的反应。另一实施例基于引入的功率信号中检测到的占空比而调暗LED。一种热管理电路,检测LED的功率,获得LED的热工作范围并据此产生控制信号。
本发明通常涉及一种芯片封装组件,所述芯片封装组件被布置为与包括多个电路板接触部的电路板电耦合。所述芯片封装组件可以包括芯片封装,其包括第一侧和第二侧,所述第二侧包括被布置成电耦合到所述多个电路板接触部的多个第一接触部和被布置成通过连接器组件电耦合到远程设备的多个第二接触部。
一种通过分析从电源接收的信号而检测驱动LED的电源的类型的电路。该电路基于所确定的类型控制LED的行为,诸如对调光器或热条件的反应。另一实施例基于引入的功率信号中检测到的占空比而调暗LED。一种热管理电路,检测LED的功率,获得LED的热工作范围并据此产生控制信号。
方法和系统可提供标识计算系统中的热管理设置以及将该热管理设置与有效配置信息进行比较。附加地,如果该热管理设置不符合该有效配置信息,修改该热管理设置,其中,该修改可致使该热管理设置符合该有效配置信息。附加地,可发起威胁风险通知,以便通知用户不符合。
本发明涉及一种制品,该制品包括具有第一主表面和任选地第二主表面的基底。层状布置设置在所述第一主表面和所述第二主表面的任一者或两者上。该层状布置包括碳层和导电聚合物层。
公开了用于在包含异构多处理器片上系统(“SoC”)的便携式计算设备中对工作负荷进行热感知调度的各方法和系统的各种实施例。由于异构多处理器SoC中的个体处理组件在给定温度下可展现不同的处理效率,且由于这些处理组件中不止一个处理组件可能能够处理给定码块,因此可以利用将这些个体处理组件在其所测量的工作温度下的各性能曲线进行比较的热感知工作负荷调度技术,通过实时、或近实时地将工作负荷分配给被最佳定位成高效地处理该码块的处理组件来使服务质量(“QoS”)最优化。
本发明涉及估计多电压燃料电池系统中的冷却剂电导率。一种冷却剂电导率方法和装置用来确定循环通过车辆的冷却剂系统的冷却剂何时开始传导电流并且损失其电隔离性质。该系统包括电池监测控制器,该电池监测控制器感测放置在整个燃料电池系统中的一个或多个隔离电阻并且被编程为执行隔离算法。该隔离算法以特定次序断开和闭合接触器,测量一个或多个隔离电阻的电阻并且计算冷却剂电导率值。该系统将指示冷却剂何时需要更换。
一种用于具有用户配置能力的设备的自适应热管理的装置,包括:安全存储器,配置成存储热管理策略;热监视电路,配置成监视与设备的一个或多个传感器子系统关联的热状态;以及策略实施电路,配置成响应于违背热阈值的所监视的热状态而实施所存储的热管理策略。