描述了涉及热传递设备的管理的技术。在一个或多个实现中,设备包括外壳、置于外壳内的发热设备以及置于外壳内的热传递设备。热传递设备具有供电有源冷却设备。设备还包括被配置成基于热传递设备的可能方向来调整供电有源冷却设备的操作的一个或多个模块。
一种系统,包括配置为控制车辆系统中的第一接触器和第二接触器的操作的开关控制模块。第一和第二接触器被配置为将前端总线和直流(DC)总线分别有选择地连接到车辆系统的能量存储系统。所述前端总线被配置为从外部电源接收电力并且向转换器设备提供电力。所述转换器设备被配置为向所述DC总线供应DC电力。所述开关控制模块被配置为在所述车辆系统可操作地耦合到所述外部电源时闭合所述第二接触器,以便所述能量存储系统被所述DC电力充电。所述开关控制模块被配置为在所述车辆系统可操作地与外部电源去耦合时闭合第一接触器或者第二接触器之一。
本发明描述了一种用于蓄电池单元(23)的冷却系统,其中蓄电池组(22)的蓄电池单元由壳体(22a)包围并且该壳体在一侧上与外部冷却系统连接并且与之相互热作用。外部冷却系统在此被冷却剂流过。通过蓄电池组和冷却系统的提出的设置确保了外部冷却系统的冷却剂在泄漏的情况下也不能够到达蓄电池壳体中。
一种通过分析从电源接收的信号而检测驱动LED的电源的类型的电路。该电路基于所确定的类型控制LED的行为,诸如对调光器或热条件的反应。另一实施例基于引入的功率信号中检测到的占空比而调暗LED。一种热管理电路,检测LED的功率,获得LED的热工作范围并据此产生控制信号。
本发明通常涉及一种芯片封装组件,所述芯片封装组件被布置为与包括多个电路板接触部的电路板电耦合。所述芯片封装组件可以包括芯片封装,其包括第一侧和第二侧,所述第二侧包括被布置成电耦合到所述多个电路板接触部的多个第一接触部和被布置成通过连接器组件电耦合到远程设备的多个第二接触部。
至少一个特征涉及一种具有被动热管理的设备,所述设备包含:集成电路裸片,热耦合到所述集成电路裸片的散热器,热耦合到所述散热器的相变材料PCM,以及封围所述散热器和所述PCM的模制复合物。在一个实例中,散热器可包含多个鳍片,并且PCM的至少一部分插入在所述多个鳍片之间。另一特征涉及一种包含集成电路裸片以及其中混合有相变材料的模制复合物的设备。所得的模制复合物完全封围所述裸片。
一种通过分析从电源接收的信号而检测驱动LED的电源的类型的电路。该电路基于所确定的类型控制LED的行为,诸如对调光器或热条件的反应。另一实施例基于引入的功率信号中检测到的占空比而调暗LED。一种热管理电路,检测LED的功率,获得LED的热工作范围并据此产生控制信号。
一种装置,所述装置具有用于增强型热封装管理的外部和 或内部热容性材料。所述装置包括具有发热器件的集成电路(IC)封装。所述装置还包括具有附接至所述IC封装的第一侧面的热扩散器。所述装置还包括接触所述热扩散器的所述第一侧面的热容性材料储存器。所述热容性材料储存器可以相对于所述发热器件而横向设置。
方法和系统可提供标识计算系统中的热管理设置以及将该热管理设置与有效配置信息进行比较。附加地,如果该热管理设置不符合该有效配置信息,修改该热管理设置,其中,该修改可致使该热管理设置符合该有效配置信息。附加地,可发起威胁风险通知,以便通知用户不符合。
本实用新型涉及一种电池组组件,该电池组组件从方形电池吸取热量,所述方形电池具有相对的主表面并且在壳体内以堆叠的构造布置。热管理组件包括多个热传递片,该多个热传递片由压缩的膨化石墨颗粒片制成。每个热传递片定位成接触至少一个方形电池的主表面。盖板具有顶面和底面,并且包括多个孔,多个热传递片延伸通过这些孔。孔包括至少一个弯曲的侧壁,并且热传递片在弯曲的侧壁之上弯曲。每个热传递片的至少一部分固定在热沉和顶面之间。
公开了用于在包含异构多处理器片上系统(“SoC”)的便携式计算设备中对工作负荷进行热感知调度的各方法和系统的各种实施例。由于异构多处理器SoC中的个体处理组件在给定温度下可展现不同的处理效率,且由于这些处理组件中不止一个处理组件可能能够处理给定码块,因此可以利用将这些个体处理组件在其所测量的工作温度下的各性能曲线进行比较的热感知工作负荷调度技术,通过实时、或近实时地将工作负荷分配给被最佳定位成高效地处理该码块的处理组件来使服务质量(“QoS”)最优化。
公开了将热施加至飞机表面的系统和方法。复合飞机结构包括含多个树脂浸渍片(212、214、216、218、220、222)的基体、邻近所述基体的加热层(230),其中加热层包括至少一个加热器、邻近加热层的粘合层(240a、240b)、邻近加热层的防雷层(250)、以及邻近防雷层的外表面层(260)。