本实用新型提供一种电动汽车热管理系统包括:电机冷却系统、热泵空调系统以及连接所述电机冷却系统和热泵空调系的液液热交换器;所述热泵空调系统包括冷凝器、压缩机、蒸发器、暖风芯体、第一膨胀阀、第二膨胀阀、第一三通阀、第二三通阀、第三三通阀。本实用新型可解决汽车空调冬季无法制暖无法融霜的技术问题,且将电机冷却系统的电机发热有效利用起来。
本实用新型提供一种新能源汽车热管理系统,包括:电机冷却系统、热泵空调系统、电池冷却系统;第一液液热交换器和第二液液热交换器;第一液液热交换器连接于电机冷却系统和热泵空调系统之间,第二液液热交换器连接于热泵空调系统和电池冷却系统之间;热泵空调系统包括冷凝器、压缩机、蒸发器、四通阀;四通阀处于制热档位时,第一液液热交换器、冷凝器连接至压缩机的制热入口,其制热出口连接至蒸发器和第二液液热交换器;四通阀处于制冷档位时,第二液液热交换器、蒸发器连接至压缩机的制冷入口,其制冷出口连接至冷凝器和第一液液热交换器。本实用新型可解决汽车空调冬季无法制暖无法融霜的技术问题,且将电机冷却系统的电机发热有效利用起来。
本实用新型公开了一种基于金属相变材料的动力电池热管理系统,包括电池模块箱以及开有通孔的模块箱顶盖,所述电池模块箱内还放置有至少三块的电池单体,电池单体之间形成的空隙中设置有基于金属相变材料的烧结热管,基于金属相变材料的烧结热管包括蒸发端和冷凝端,蒸发端设置在电池单体之间形成的空隙中,冷凝端通过通孔伸出电池模块箱;蒸发端的管壁包括外层、包裹在外层中的内层以及填充在内层和外层之间的第一中间层,第一中间层的材料为金属相变材料,内层和外层的材料为金属铜或者铝;冷凝端的管壁为螺纹结构。本实用新型解决了利用热管散热的动力电池,其散热效果仍然不理想,能量利用率亦不高的问题。
本发明公开了一种基于金属相变材料的动力电池热管理系统,包括电池模块箱以及开有通孔的模块箱顶盖,所述电池模块箱内还放置有至少三块的电池单体,电池单体之间形成的空隙中设置有基于金属相变材料的烧结热管,基于金属相变材料的烧结热管包括蒸发端和冷凝端,蒸发端设置在电池单体之间形成的空隙中,冷凝端通过通孔伸出电池模块箱;蒸发端的管壁包括外层、包裹在外层中的内层以及填充在内层和外层之间的第一中间层,第一中间层的材料为金属相变材料,内层和外层的材料为金属铜或者铝;冷凝端的管壁为螺纹结构。本发明解决了利用热管散热的动力电池,其散热效果仍然不理想,能量利用率亦不高的问题。
本实用新型提供了一种高效航天器热管理系统,包括热量收集模块(1)、高效散热模块(2)以及换热器(5),所述热量收集模块(1)和高效散热模块(2)通过换热器(5)耦合连接。本实用新型通过热量收集模块实现热量的收集、储存、运输,以及应用混合工质的高效散热模块,较大幅度的提高了辐射器的辐射温度,并提高了辐射器的散热效率,减小所需辐射器的面积,从而解决了大型航天器及卫星航天器散热面积不足的问题,具有体积小、重量轻、制造成本低廉、耗能少的特点,适用于散热面积严重不足的航天器。
本实用新型公开了一种电动汽车的电池箱热管理系统,包括电池管理系统、极性转换开关、电池模块、半导体制冷片、热管、散热翅片和温度传感器,温度传感器贴于电池模块上,热管连接半导体制冷片与散热翅片,电池管理系统与温度传感器相连接,电池管理系统与极性转换开关相连接,极性转换开关与半导体制冷片相连接,其中,电池管理系统根据温度传感器的检测结果,控制极性转换开关的开关,以及极性转换开关的正负极。本专利既可以实现对电池模块的降温,也可以实现对电池模块的加热,结构简单。
本实用新型公开了一种电动汽车的电池热管理系统,充电机和电池之间安装功率分配单元,在充电前,检测电池温度,温度过低或过高,都要先启动加热部件或冷却部件,此时功率分配单元并不给电池分配电力,待温度适宜才开始供电。电动汽车行进过程中,能够利用电动机散出的热量为电池加热。本实用新型提供的电池热管理系统,充电时和行进过程中,可以不使用或减少使用电池的电能,提高了电池电能的利用效率。
本实用新型涉及电动汽车技术领域,公开了一种纯电动汽车热管理系统,包括压缩机、四位换向阀、室外换热器、第一膨胀阀和室内换热器,四位换向阀包括四个工作口,压缩机的排气口连接至四位换向阀的一口,压缩机的吸气口连接至四位换向阀的二口,换向阀的三口依次连接室外换热器、第一膨胀阀、室内换热器至四口,压缩机由纯电动汽车提供电能,第一膨胀阀通过四个单向阀桥接设置在管路中。本实用新型通过新的热管理系统,减少电能转化为热能的比例,提高能源的利用效率,满足复杂情况下系统热管理的需求。
一种动力电池热管理结构,该动力电池是多个具有独立热管理结构的电池模块所组成,电池单体有间隔地布置在电池模块热管理风道框架内,框架采用封装形式,两端设置可拆卸的进、出风口,进风口安装有进风叶片,进风叶片可根据电池温度高低由微型电机控制其开度,在电池模块内布置温度传感器,监控电池温度变化,将温度信号反馈给控制单元,以对电池温度形成闭环控制。本发明提出了一种单个模块的热管理结构,该结构简单且控制原理简易,集成可操作性高,同时克服了由于电池包结构及空间限制导致整体热管理效果不均衡,影响电池使用性能的问题。
本发明公开了一种电动汽车的电池箱热管理系统,包括电池管理系统、极性转换开关、电池模块、半导体制冷片、热管、散热翅片和温度传感器,温度传感器贴于电池模块上,热管连接半导体制冷片与散热翅片,电池管理系统与温度传感器相连接,电池管理系统与极性转换开关相连接,极性转换开关与半导体制冷片相连接,其中,电池管理系统根据温度传感器的检测结果,控制极性转换开关的开关,以及极性转换开关的正负极。本发明还公开了一种电动汽车的电池箱热管理方法,本发明既可以实现对电池模块的降温,也可以实现对电池模块的加热,结构简单。
本发明提供了一种微网新能源混合储能系统,包括新能源发电子系统、储能载体子系统、变流器子系统、高低压配电子系统、后台监控子系统。本发明通过BMS进行电池均衡,避免因电压、容量等参数不均一造成的短板效应,并且避免引起电池组性能恶性循环,而导致整组容量下降、电池寿命缩短;同时通过热管理系统对空调设备制冷模式进行科学控制,使蓄电池在工作过程中保持适当、均一、稳定的环境温度;从而延长了蓄电池的使用寿命,有效降低运行成本。本发明采用集装箱模块化储能方案,可以设计为小型临时发电系统,建设投入相对较小。使用方便,紧急情况下,可随时运输到野外等不良条件环境中,进行发电供电;能够集中建设为大型储能电站,且扩容方便。
本实用新型公开了一种用于锂电池保护板的散热片,包括:底板,所述底板固定设置有至少3个铆柱,所述铆柱内设置有内螺纹,所述底板通过所述铆柱与锂电池保护板固定连接;所述底板的底部设置有若干个硅胶片,所述硅胶片安装在所述锂电池保护板的放电MOS管与均衡电阻上。本实用新型设计的散热片即能在放电过程中对MOS管进行有效散热,同时在充电过程中对均衡电阻进行有效散热,使得保护板上的发热元器件连成一体,大大提高散热面积,使整个保护板的热管理得到有效改善;通过铆柱的设计,有效提高了散热片与保护板的组装效率,降低了生产成本。