本实用新型提供一种纯电动客车空调与电池热管理集成的整车热管理系统,包括车内空调系统与电池热管理系统,所述车内空调系统包括构成回路的全直流变频压缩机、四通阀、冷凝器、蒸发器、干燥过滤器、电子膨胀阀和气液分离器,所述电池热管理系统与车内空调系统共用蒸发器,所述电池热管理系统包括载冷剂系统。本实用新型实现了在一个机组内满足两种功能,并共用了大部分的零部件,降低了机组尺寸,降低整车热管理成本;本实用新型设有两种车内散热器的布置方式,改善车内温度的均匀性,满足了头凉脚暖的需求,提高车内温度的舒适性要求。
本实用新型公开了一种双离合器自动变速器热管理系统,包括输入电机、输出电机和油水交换器;其中,输入电机与待测双离合器自动变速器的输入端连接;输出电机与待测双离合器自动变速器输出端的驱动轴连接;油水交换器包括油室,油室包括进油口和出油口,且进油口与待测双离合器自动变速器上的出油通道连通,出油口与待测双离合器自动变速器上的进油通道连通。本实用新型提供的双离合器自动变速器热管理系统,实现了模拟整车的不同行驶状态,并在不同状态下对待测变速器的热管理性能作出分析评价,实现了在设计初期即可对双离合器自动变速器热管理系统的有效性进行判定。
一种具有冷却和加热功能的电池模组结构,包括:电池模组、模组固定件和热管理组件,电池模组由若干软包电芯依次堆叠组成,相邻软包电芯之间设置有传导机构,传导机构包括传导片本体,传导片本体的底部开设有用于提高传导效率的传导接触片;模组固定件包括第一模组固定板和第二模组固定板,第一模组固定板安装于电池模组的一侧,第二模组固定板安装于电池模组的另一侧,第一模组固定板开设有第一模组固定片,第二模组固定板开设有第二模组固定片。本实用新型可实现对电池模组的加热和冷却,让电池模组处于一个最佳的工作温度,发挥电池模组的最大性能。
本发明揭示一种用于动态热管理的自适应热斜率控制的方法和装置。方法包含:由装置监控并获得采样温度,其中采样温度包含当前温度和以前的温度;基于采样温度计算热斜率索引,其中热斜率索引是基于当前温度和以前的温度的是斜率相关值;确定计算的热斜率索引是否大于预定义的斜率阈值;基于热斜率算法调整功率预算;以及基于调整的功率预算应用动态热管理。通过本发明的以上特征,可以有效地进行动态热管理。
本发明涉及一种电池储能设备及其热管理系统,属于电池储能技术领域。本发明通过在各电池模块上设置液体循环支路,在由至少两个电池模块构成的电池包中设置液体循环管路,各液体循环支路并联到对应电池包的液体循环管路上,液体循环管路上设置有水泵,根据各电池模块的温度,控制对应电池模块的液体循环支路与液体循环管路连通构成循环体系,实现对各电池模块的温度调节,最大限度的保证了电池能够工作在适宜的温度范围内,提高了整个电池储能设备的寿命。
本实用新型涉及锂电池技术领域,尤其涉及一种精确控制的锂电池保护装置,包括控制器、电压采样电路、温度采样电路、充放电保护电路和温度保护电路,所述电压采样电路和温度采样电路均与锂电池组中的电池单体电性连接,所述充放电保护电路与电压采样电路电性连接,当检测出所连接的任一电池单体电压与其他电池单体电压不一致时,控制器关闭该电池单体;所述温度保护电路与温度采样电路电性连接,当检测出所连接的任一电池单体温度高于设定阈值时,控制器关闭该电池单体。通过实时获取所有电池单体的电压值和温度值,然后根据获得的电压值和温度值对电池单体进行充放电管理和热管理,从而实现对锂电池组的模块化管理,精确化管理,更安全可靠。
本实用新型公开一种电池包被动热管理系统,包括支撑板、电池模组、检测电池模组内电芯的表面温度的温度传感器和接收温度值并在温度值达到设定温度值时控制电芯的输出功率的电池管理系统;支撑板安装于电池包内的横梁上,支撑板带有空腔,空腔内填有相变材料,支撑板上放置有电池模组,且支撑板紧贴电池模组的散热面,电池模组内设有温度传感器,温度传感器和电芯与电池管理系统连接,相变材料分为外层和内层相变材料,两层间紧密接触,与支撑板接触的外层相变材料为复合相变材料。降低电芯温度受环境温度的影响,有利于延长电芯的使用寿命;由于相变材料能够起到一定的吸热作用,可降低BMS限功率的频次。
本发明公开了一种用于汽车照明的LED热管理系统,主要解决现有LED热管理系统散热效果差,可靠性低的问题。它包括LED发光单元1、可控恒流驱动单元2、转速可控散热风扇3、LED温度检测单元4、驱动温度检测单元5和微控制单元6;LED温度检测单元4设于LED发光单元1上,LED发光单元1上连接有可控恒流驱动单元2,可控恒流驱动单元2上设有驱动温度检测单元5,LED温度检测单元4和驱动检测单元5连接到微控制单元6,温控制单元6接到转速可控散热风扇3和可控恒流驱动单元2,转速可控散热风扇3为LED发光单元1散热。本发明采用智能实时控制多条负反馈环路的方式,实现了高效高可靠性的LED热管理系统,保障了行车安全。
本发明公开了一种零能耗的新能源汽车热管理系统,特点是包括空气压缩系统、制冷 制热系统、电池箱体和盘管,空气压缩系统中的空压机通过第一风能转换机构驱动,制冷 制热系统中的压缩机通过第二风能转换机构驱动,制冷 制热系统中的蒸发器与电池箱体的进口端相连接,空气压缩系统与蒸发器相连接,电池箱体内设置有电池组,电池组的空隙处填充有相变材料,盘管的一端通过管道分别与电池箱体的进口端、出口端相连接,盘管的另一端与车内出风口相连通;优点是该热管理系统不需要消耗电能,且能同时对动力电池进行热管理和对车内环境进行温度调节。
本实用新型涉及电动货车技术领域,具体为一种电动货车动力电池的布置结构,包括车头,所述车头连接有位于其后方的车底架,所述车底架靠所述车头的部位上固定有呈直立状的挡板,所述车底架上铺设有位于所述挡板后方的电池包,所述电池包的上方设有货箱,结构稳定、便于热管理且空间利用率更高。
本实用新型公开了一种电动客车电池热管理装置,包括电动客车安装架、电动客车电池组、平行流冷凝器、干燥过滤器、板式换热器、控制器、电动压缩机、电子水泵和水暖PTC;所述电动客车安装架和电动客车电池组分别设置在电动客车顶部,所述电动客车安装架上通过固定安装扣安装设置有平行流冷凝器,所述平行流冷凝器上方安装有冷凝风扇。本实用新型通过独立的制冷装置以及电子水泵、水暖PTC为纯电或者混合动立客车的车载动力电池组进行散热或者加热,提高了电池冷却或者加热效率,结构简单紧凑易于安装维护。
本发明公开了一种插电式混合动力车热管理系统,属于混合动力车技术领域。一种插电式混合动力车热管理系统,包括主冷循环路径,该主冷循环路径通过主散热器对发动机、变速箱进行散热,其特征在于,所述系统还包括:暖风制热循环路径,由发动机冷循环支路出口、电制热器、暖风换热器、循环泵一、双通阀一、发动机冷循环支路入口连通构成,所述暖风制热循环路径至少包括发动机工作时的发动机冷循环生热制热工作模式和发动机不工作时的电制热器制热工作模式,既能够满足整车的暖风要求,又充分利用了发动机散热产生的废热,使得整车内的能源得到合理循环和利用,从而达到了节约能源的效果。