本发明公开了一种车用燃料电池热管理系统及方法,其中热管理系统包括设置在燃料电池模块与ATS总成之间的水冷主回路,水冷主回路包括第一主回路、及第二主回路,第一主回路和第二主回路之间设有并联布置的第一支路和第二支路,第一支路上设有加热器,第二支路接入乘客舱暖风采暖回路,第一主回路上位于第二支路与ATS总成之间的管路上设有第一电磁阀,第一支路上设有第二电磁阀,第二支路上设有第三电磁阀,第二主回路位于第一支路和燃料电池模块之间的管路上设有水泵,水冷主回路上设有温度传感器,温度传感器的信号输出端连接至整车控制器,整车控制器的信号输出端连接至第一电磁阀、第二电磁阀、第三电磁阀、加热器和乘客舱暖风机。本发明提供的系统及方法,可缩短燃料电池启动时间,充分利用燃料电池产生的热量。 1
本发明提供一种锂离子动力电池液冷模组,电池模组由多个电池模块组装而成,所述电池模块的上表面和下表面上开有放置液冷扁管的卡槽;所述卡槽平行于电池模组的长度方向;所述锂离子动力电池液冷模组内包括来回布置的液冷扁管,所述液冷扁管沿电池模组的长度方向延伸,在电池模块端部弯转,各相邻电池模块之间均穿过所述液冷扁管。本电池模组内部集成液冷管道设计,能够在保持模组温度均一性的前提下,对模组实现快速散热与加热,具有优良的热管理性能;能够根据热管理需求进行参数调节与匹配设计,具有极强的温度适应能力,能够有效提升电池模组的重量比能量密度与体积比能量密度;采用模块化设计,装配方便、快捷、高效。
本实用新型公开了一种用于汽车照明的LED热管理系统,主要解决现有LED热管理系统散热效果差,可靠性低的问题。它包括LED发光单元、可控恒流驱动单元、转速可控散热风扇、LED温度检测单元、驱动温度检测单元和微控制单元;LED温度检测单元设于LED发光单元上,LED发光单元上连接有可控恒流驱动单元,可控恒流驱动单元上设有驱动温度检测单元,LED温度检测单元和驱动检测单元连接到微控制单元,温控制单元接到转速可控散热风扇和可控恒流驱动单元,转速可控散热风扇为LED发光单元散热。本实用新型采用智能实时控制多条负反馈环路的方式,实现了高效高可靠性的LED热管理系统,保障了行车安全。
本实用新型涉及燃料电池系统和车辆。包括整车热管理和燃料电池系统,燃料电池系统包括外循环管路和内循环管路,内、外循环管路通过换热器进行热交换,内循环管路上设有内循环水泵和去离子器。一方面,内循环管路比原有一个循环的管路长度大大缩减,从而减少了金属软管和金属弯管接头等数量,在根源上减少了锂离子的产生量,去离子器所承受的负担减轻,可提高使用寿命4 5倍;另一方面,内、外循环管路能量传递不涉及冷却液的互换,因此外循环管路中产生的离子也不会进入内循环管路内,不会对去离子器造成负担,而外循环管路中离子的含量无论多高,由于其不在燃料电池内部进行循环流动,因此也不会对燃料电池系统的绝缘性能造成太大影响。
本发明公开了一种纯电动汽车整车热管理系统及管理方法,所述纯电动汽车上具有热泵式空调系统、电池组热管理系统和电控冷却系统;该系统包括热泵式空调制冷剂液体循环回路、电池组热管理系统和电控冷却系统的冷却液液体循环回路以及ECU控制中心;两大液体循环回路在第一蒸发器和第二蒸发器处耦合,并且第一蒸发器和第二蒸发器的两个进出液体内部管道独立并且液体流向采用对流形式设计。本发明可以在保证驾乘舒适性的情况下将三个子系统间的热量相互利用,充分利用外界冷源和子系统热源,减少整车热管理系统的能耗。
本发明涉及一种集成式冷却保温电池系统及其控制方法,包括设下箱体的电池箱体,下箱体自下而上顺次设下箱盖、隔热层和导热板,下箱盖上设槽体,槽体与隔热层和导热板配合为封闭流道,流道出口和流道入口分别设于下箱体侧边;导热板上设电池模组块,电池模组块外的下箱体上配合设上箱体;电池模组块配合设分别连接至控制器的若干温度传感器,控制器连接两端分别通过管路连接至流道出口和流道入口的外部温控机构。本发明通过导热路径的建立 阻隔技术,利用冷却液和真空作为媒介,轻松调和保温、自然冷却和液冷之间的矛盾,热管理能在三种热管理模式中自如切换,在保证良好热管理前提下,最大限度降低热管理能耗,应用于车辆时,提升整车续航能力。
本实用新型涉及一种电池储能设备及其热管理系统,属于电池储能技术领域。本实用新型通过在各电池模块上设置液体循环支路,在由至少两个电池模块构成的电池包中设置液体循环管路,各液体循环支路并联到对应电池包的液体循环管路上,液体循环管路上设置有水泵,根据各电池模块的温度,控制对应电池模块的液体循环支路与液体循环管路连通构成循环体系,实现对各电池模块的温度调节,最大限度的保证了电池能够工作在适宜的温度范围内,提高了整个电池储能设备的寿命。
本发明涉及一种电池组、电池包及具有该电池包的车辆,其中,电池组包括电池组模块及换热件。电池组模块包括相变材料块及至少两个单体电池,至少两个单体电池之间串联或并联设置,至少两个单体电池沿单体电池的厚度方向并排间隔设置。单体电池的正面及反面均设有相变材料块,相邻两个单体电池通过相变材料块分隔开来。换热件与侧面相连,且与相变材料块的侧壁相连。换热件的内部设置有换热介质通道,换热介质通道具有进口及出口。电池包包括至少两个上述电池组,车辆包括车辆主体及设置于车辆主体上的电池包。上述电池组、电池包及具有该电池包的车辆,具备热管理能耗低、单体电池温度响应及时、温度范围合理、单体电池间的温度均衡等优点。
本实用新型公开了一种氢燃料电池的热管理系统和控制管路,所述系统包括:氢燃料电池控制单元、氢燃料电池、温度传感器、水泵、两个三通电磁阀、散热器、加热装置;所述氢燃料电池控制单元通过控制三通电磁阀的通断及水泵的开启来控制管路中水路的通断与走向,并根据温度选择散热器及加热装置启停对系统实现加热、散热与保温;本实用新型根据水温进行调控,保证氢燃料电池始终在适宜的环境工作,提高了氢燃料电池的工作效率及使用寿命。
本实用新型公开了一种零能耗的新能源汽车热管理系统,特点是包括空气压缩系统、制冷 制热系统、电池箱体和盘管,空气压缩系统中的空压机通过第一风能转换机构驱动,制冷 制热系统中的压缩机通过第二风能转换机构驱动,制冷 制热系统中的蒸发器与电池箱体的进口端相连接,空气压缩系统与蒸发器相连接,电池箱体内设置有电池组,电池组的空隙处填充有相变材料,盘管的一端通过管道分别与电池箱体的进口端、出口端相连接,盘管的另一端与车内出风口相连通;优点是该热管理系统不需要消耗电能,且能同时对动力电池进行热管理和对车内环境进行温度调节。
一种极寒环境下锂离子动力电池组的供电保障系统,包括:隔热装置、热管理模块和充放电控制与均衡模块,电池组设置于隔热装置内并与外部环境隔离;热管理模块设置于电池组上方的隔热装置内,通过与其连接的温度传感器测量电池表面温度并控制与其连接的加热器以调节电池表面温度,热管理模块通过IO接口与充放电控制与均衡模块相连并输出电池表面温度数据;充放电控制与均衡模块设置于热管理模块与电池组之间的隔热装置内,通过与电池组相连以测量电池组的电压、电流信号并根据电池表面温度信号控制电池组的输入输出,充放电控制与均衡模块输出端通过DC DC转换器与热管理模块相连并为热管理模块供电。本装置能够在0℃到 65℃低温环境下对锂离子电池组进行高效、可靠的热管理、充放电控制与均衡控制。
本发明公开了一种车辆电池包的热管理系统及热管理方法,涉及车辆技术领域。所述车辆电池包的热管理系统包括环境温度传感器、电池温度传感器、电子控制单元和水循环通道,所述水循环通道依次经过电子水泵、电池包、散热器和空调冷却装置,用于传导所述电池包产生的热量,当所述环境温度传感器检测出的温度未超过第一阈值,并且所述电池温度传感器检测出的温度达到第二阈值且未超过第三阈值时,所述散热器与所述空调冷却装置一起对所述电池包进行冷却。本发明还提供了相应的热管理方法。通过本发明,可以加长车辆电池包的续航里程,对于混合动力车辆而言,也可以降低车辆油耗,因此极大提高了节能减排的效果。