本发明提供一种电动汽车电池热管理系统,包括:控制单元、冷却液循环装置和余热循环装置。所述冷却液循环装置通过第一回路与动力电池进行热交换,对所述动力电池进行制冷,以使所述动力电池的温度降低。所述余热循环装置通过第二回路与动力电池进行热交换,对所述动力电池进行制热,以使电机逆变器运行时产生的热量用于对动力电池的温度升高。所述控制单元用于根据动力电池的温度控制所述第一回路或所述第二回路的通断。本发明提高动力电池的散热效率,减少动力电池加热升温时能源浪费。
本实用新型提供了一种电池热管理系统和车辆,涉及车辆电池热管理技术领域,保证电池加热功能的同时节约成本。本实用新型的主要技术方案为:一种电池热管理系统包括:电池回路,所述电池回路中串接有电池和第一水泵;供热回路,所述供热回路中连接有发热装置;第一换向单元,所述第一换向单元连接于所述电池回路和所述供热回路中,用于使所述电池回路与所述供热回路在相互连通状态和相互独立运行状态之间切换。该电池热管理系统主要用于新能源车的电池加热。
本发明提供了一种车辆高压附件的热管理方法、系统及车辆,该方法包括:获取车辆的冷却系统中冷却液的当前温度,其中,所述冷却系统包括水泵和风扇;判断所述冷却液的当前温度是否大于第一温度阈值;如果所述冷却液的当前温度大于第一温度阈值,则以最大占空比启动所述水泵,并根据所述冷却液的当前温度控制所述风扇的运行转速。本发明的方法根据高压附件散热需求控制水泵和风扇的运行状态,避免提供过量的散热能力从而降低电能消耗,进而提升续航里程。
本发明属于热管理技术领域,公开了一种热管理系统和包含该热管理系统的汽车。热管理系统包括第一循环回路、第二循环回路、第三循环回路和第四循环回路,其中,第一循环回路包括压缩机、换热器和吸热组件,吸热组件包括并联设置的第一支路和第二支路,第一支路包括串联的第一电子膨胀阀和蒸发器,第二支路包括串联的第二电子膨胀阀和冷却器的冷介质通道;第二循环支路包括压缩机、第一冷凝器的热介质通道、第三电子膨胀阀和换热器;第三循环回路包括第一冷凝器的冷介质通道、第一加热器、第二加热器的热介质通道和第一泵;第四循环回路包括冷却器的热介质通道、电池包和第二泵。本发明的热管理系统,集成度高,能效比高且结构紧凑。
本发明新能源车用集成乘员舱空调及电池包热管理热泵系统,含有电动压缩机、水冷冷凝器、电子膨胀阀、电磁阀、室外换热器、液气分离器、电磁膨胀阀、车内蒸发器、水暖式车内暖风芯体、5KW水暖式电加热器、电子水泵、复合换热器和电池包,能形成乘员舱制冷和电池冷却模式的制冷剂侧回路、电池冷却液侧回路及乘员舱制热和电池加热模式的制冷剂侧回路、乘员舱制热的冷却液侧回路及一系列单独的制冷或制热回路;使新能源汽车能满足各种标准规定的各种环境温度下乘员舱制冷、制热和除湿以及电池包冷却和加热的要求,还具有电池包预加热和乘员舱预热预冷的功能,解决了乘员舱和电池包的热管理问题,有助于我国新能源汽车的发展。
本实用新型公开了一种纯电动汽车整车热管理系统,所述纯电动汽车上具有热泵式空调系统、电池组热管理系统和电控冷却系统;该系统包括热泵式空调制冷剂液体循环回路、电池组热管理系统和电控冷却系统的冷却液液体循环回路以及ECU控制中心;两大液体循环回路在第一蒸发器和第二蒸发器处耦合,并且第一蒸发器和第二蒸发器的两个进出液体内部管道独立并且液体流向采用对流形式设计。本实用新型可以在保证驾乘舒适性的情况下将三个子系统间的热量相互利用,充分利用外界冷源和子系统热源,减少整车热管理系统的能耗。
本发明涉及一种新能源汽车动力电池热管理装置及其管理方法,属于新能源汽车电池管理技术领域。包括如下步骤:第一温度传感器检测动力电池包的实时温度T,并对实时温度T预先设定四个温度等级,第二温度传感器检测温差电池模块的高低温端的温差 T,电压传感器检测温差电池模块的温差电压U;控制器预设温差电池模块的临界温度为Th,临界电压为Uh,低温端温度T1,高温端温度T2,若判断 T>Th且U>Uh,则控制温度继电器模块驱动温差电池模块动作;控制器基于预设的温度等级,对动力电池包的实时温度T进行判断。优点:通过优化控制策略将风冷和水冷有机结合,实现对动力电池高效的热管理,可以提高电池寿命和使用效率。
本实用新型涉及一种集成式冷却保温电池系统,包括设下箱体的电池箱体,下箱体自下而上顺次设下箱盖、隔热层和导热板,下箱盖上设槽体,槽体与隔热层和导热板配合为封闭流道,流道出口和流道入口分别设于下箱体侧边;导热板上设电池模组块,电池模组块外的下箱体上配合设上箱体;电池模组块配合设分别连接至控制器的若干温度传感器,控制器连接两端分别通过管路连接至流道出口和流道入口的外部温控机构。本实用新型通过导热路径的建立 阻隔技术,利用冷却液和真空作为媒介,轻松调和保温、自然冷却和液冷之间的矛盾,热管理能在三种热管理模式中自如切换,在保证良好热管理前提下,最大限度降低热管理能耗,应用于车辆时,提升整车续航能力。
本发明公开了一种分离型电池热管理系统、其使用方法以及快速充电系统,其中,系统包括:电池系统包括若干电池模组和用于供热交换媒介流通的换热结构,换热结构设置于电池模组之间;外置冷热供给系统通过连接装置与电池系统建立热交换回路,用于通过热交换回路和存储于外置冷热供给系统中的热交换媒介对每个电池模组进行热交换;外置热管理控制装置分别与电池系统、连接装置以及外置冷热供给系统建立通信连接,控制连接装置和外置冷热供给系统的运行。本发明具有成本低、易实现、冷却效果好、灵活可靠、适用范围广以及利用率高的优点,并且有效解决电池系统大容量化、高倍率化以及梯次利用的热管理难题。
本发明公开了一种电动汽车热管理系统及控制方法,该电动汽车热管理系统包括:电机控制器;与所述电机控制器连接的电动机;所述电动机通过第一三通环分别与汽车的空调系统和动力电池热管理系统连接;正温度系数PTC加热器;所述PTC加热器通过第二三通环分别与汽车的空调系统和动力电池热管理系统连接;控制系统,用于获取所述空调系统以及动力电池的加热需求;根据所述加热需求控制所述第一三通环和所述第二三通环的开启状态。本发明的实施例,将整个车辆的热管理系统集成在一起,整车协同控制做到热量最优化分配,节约电量,有效减少车辆在行车过程当中PTC加热带来的能量损耗,增加车辆续航里程。
本实用新型公开了一种应新能源汽车电机散热与电池冷暖控温综合系统,包含一个电机散热单元及一个电池冷暖控温单元,其中,该电机散热单元包括,为电机提供冷却液的电机冷却回路以及连接在电机冷却回路上的第一散热器、第一液体泵;该电池冷暖控温单元包括,为电池提供冷却液的电池冷却回路,在低温环境下加热电池,以供电池启动以及使电池在控制温度下运行的电池加热回路,在低温环境下,电池需要加热时,电机冷却回路与电池加热回路连接。本实用新型采用的技术方案,在低温环境下可将电机冷却回路与电池加热回路连接,冷却电机后升温的冷却液提供给电池加热,在其为电池加热后再进入散热器冷却,因此可优化热能分配,减少热能损失,节约电力。
本发明实施例提供的电池管理系统、方法及汽车,所述电池管理系统包括热失稳检测单元、信号检测单元、供电控制单元、电池控制单元、热管理控制单元及热管理单元。信号检测单元根据热失稳检测单元输出的热失稳检测信号输出供电控制信号,供电控制单元根据所述供电控制信号为电池控制单元及热管理控制单元供电,电池控制单元发送热失稳故障信息给所述热管理控制单元,热管理控制单元在接收到所述热失稳故障信息后控制所述热管理单元对所述电池进行降温。上述系统中,不间断对电池进行热失稳状态检测,并在发生热失稳时控制热管理单元对电池进行降温,以使电池恢复热平衡,避免电池温度过高引起的安全事故。