本实用新型公开了属于电气设计技术领域的一种基于车载天然气供能的动力电池热管理系统。该动力电池热管理系统利用车载天然气供能,使用燃气加热器加热防冻液,加热后的防冻液除了用于乘客舱除霜暖风外,还将通入换热器用于加热空气,热空气通过鼓风机通入电池箱为电池加热和保温;整套系统由动力电池热管理系统控制器控制,具有不耗用动力电池电能、加热功率大、安全性好、控制灵活等优点,既能够用于停车充电时的动力电池加热和保温,又能够用于行车时的动力电池加热和保温;为在北方寒冷地区推广和应用电动商用车提供了一种切实可行的解决途径。
本发明公开了属于电气设计技术领域的一种基于车载天然气供能的动力电池热管理系统。该动力电池热管理系统利用车载天然气供能,使用燃气加热器加热防冻液,加热后的防冻液除了用于乘客舱除霜暖风外,还将通入换热器用于加热空气,热空气通过鼓风机通入电池箱为电池加热和保温;整套系统由动力电池热管理系统控制器控制,动力电池热管理系统控制器将根据动力电池的温度来控制热交换器中防冻液的流量、鼓风量和气流循环方式;该动力电池热管理系统既能够用于停车充电时的动力电池加热和保温,又能够用于行车时的动力电池加热和保温;为在北方寒冷地区推广和应用电动商用车提供了一种切实可行的解决途径。
本发明属于电池组热管理技术领域,其特征在于,基于实验得到镍氢电池的平均比热、 生热速率及电池平衡电动势温度影响系数;在计算机中,建立电池生热模型,使用软件Fluent 得到电池内部温度场分布;再以自然风冷条件下的温差为基准,以变电流放电过程的平均电 流为输入,建立一个同时反映电流、工作时间及电池表面传热系数对温度影响的温差模型; 由于电池的内外温差曲线都具有幂函数特征,因而用幂函数拟合温差曲线,从而得到温差模 型的各系数值;利用温差模型算出温差,再加上表面各点测温值便可得到电池内部的最高温 度,从而填补了空白。