一种基于TEC的动力电池热管理系统,包括动力电池包、与动力电池包一一对应的TEC总成、控制器,控制器包括依次连接的电池温度采集模块、BMS模块、开关元件驱动模块,电池温度采集模块的输入端与动力电池包内的温度传感器相连,开关元件驱动模块的输出端通过DC DC变换器与TEC总成相连,控制方法包括BMS模块对来自温度采集模块的动力电池温度信号进行处理后输出控制指令给开关元件驱动模块,若动力电池温度不在其合适工作温度范围内,开关元件驱动模块驱动TEC总成进行制冷散热或加热温控操作,若动力电池温度在其合适工作温度范围内,TEC总成则不进行温控操作。本设计不仅简化了控制,而且提高了系统的工作效率。
本发明涉及一种形成用于主动组件的电磁屏蔽与热管理的金属层的方法,所述方法优选通过湿式化学金属电镀,在模制化合物的层上使用增粘层并且在所述增粘层上形成至少一个金属层或通过湿式化学金属电镀工艺在所述增粘层上形成至少一个金属层来实现。
本发明公开一种基于机内热管理和排气管喷油的DPF主动再生控制系统,该系统在需要进行碳载量再生时,通过柴油机机内热管理进行一次升温,保证DOC催化器前排温满足排气管燃油喷射判断条件,同时通过排气管燃油喷射,实现DOC催化器二次升温,从而实现DPF催化器再生,降低了柴油机机内再生产生的能耗,从而降低了机油稀释率,提高了柴油机的可靠性。
本实用新型实施例提供一种热管理装置及动力电源装置,属于电池热管理技术领域。所述热管理装置包括液冷扁管以及至少一个导热套筒。所述导热套筒套设于单体电池上,将所述单体电池散发出的热量传递至液冷扁管。所述液冷扁管绕设于动力电池模组中的多排电池组之间,通过液体管道内冷却液的流动将吸收的热量散发到动力电池模组外。与现有的一些电池散热技术相比,本实用新型实施例提供的热管理装置具有更好的散热效果,能够满足高散热需求的动力电池模组,可以更好的保障动力电源装置的使用安全。
本实用新型公开了一种锂电池相变热管理组装结构,解决锂电池在工作过程中热量集聚未能及时排出,不同部位温度集聚状况也不同,导致电池温差大的问题,包括铝端板,串联铜排、上盖,其特征是每组锂电池均由一个支架固定,每个支架的一侧均设有一块相变铝板;每组锂电池由若干片软包电芯同一方向排列构成;支架上设有锂电池卡槽;铝端板和相变铝板之间设有平板结构的绝缘板。结构稳定可靠,每件软包电芯均有独立的相变铝板,大幅降低成组后的锂电池充放电温升,减小软包电芯温差,提高了锂电池在使用中的性能和寿命。
本实用新型涉及一种纯电动客车动力电池舱热管理系统,包括控制器、若干个电池舱体,其特征在于,每个电池舱体均包括调温换气装置、舱温传感器、电池模组和电池模组温度采集装置,所述控制器连接所述舱温传感器和所述调温换气装置,BMS电池管理单元连接所述电池模组和所述电池模组温度采集装置,所述控制器连接车辆显示装置和BMS电池管理单元,以电池模组是否工作在最佳温度25℃为执行不同模式判断维度,通过降低高温舱体温度和升高低温舱体对舱体的温度进行调节。
本发明公开一种高性能热管理动力电池模组及包括其的电池组,电池模组包括若干交错排布的电芯、热传导模块、液冷模块以及用于固定电芯的电芯固定模块,所述电芯固定模块包括电芯限位装置以及位于所述电芯限位装置两侧的模组支撑装置,所述液冷模块集成在所述模组支撑装置中,所述热传导模块同时与所述电芯以及所述模组支撑装置接触;将液冷模块与模组支撑装置进行集成,降低整体的重量与生产成本,同时保证冷却系统的可靠性与模组支撑装置的机械强度。电池组包括若干串联的上述高性能热管理动力电池模组。
本发明公开一种新型热管理动力电池模组及其装配工艺,包括电源模组,电源模组包括若干电池单元以及用于固定电池单元的固定板,固定板上固定设置有固定耳;模组固定模块,包括与固定耳位置对应的固定支架,固定支架中设置有固定槽,固定槽的侧壁上朝向固定槽的中部位置设置有弹性固定件;模组冷却模块,包括穿设于电池单元之间的冷却管组件,冷却管组件包括管本体,管本体的外部设置有导热硅胶,导热硅胶与电池单元过盈配合。采用该结构的新型热管理动力电池模组能够满足国家振动的测试,并在长期使用过程中不出现松脱等状况;其结构设计合理、在保证电池模组的可靠性的同时,减轻了模组的重量、提高了动力电池系统的比能量。
本实用新型涉及电池技术领域,具体涉及一种用于锂电池模组中的高绝缘性水冷管,包括水冷管本体及设置于所述水冷管本体两端的管嘴,所述水冷管本体的外表面涂覆有聚酰亚胺绝缘层,所述聚酰亚胺绝缘层的厚度为0 05 0 2mm。由于本实用新型的水冷管本体采用铝材质制成,且外表面涂覆有聚酰亚胺绝缘层,聚酰亚胺绝缘层起到了很好的绝缘作用,将水冷管安装在电池组内实现与电芯的紧密接触后,从而提高了电池组的高效热管理,避免了与电芯以及汇流排之间短路和漏电现象。
本发明提供一种探漏装置及电池模组探漏系统。电池模组包括热管理组件,热管理组件设置有一用于容置控温材料的第一腔体,探漏装置与所述热管理组件的底部存在缝隙。探漏装置设置有用于容置导电物料的探漏组件,探漏装置两端连接外部电源,外部电源与探漏组件中导电物料形成电性回路。当热管理组件在发生泄漏时,控温材料沿侧壁、缝隙进入到容置导电物料的探漏组件,外部电源与探漏组件中导电物料形成的电性回路断开,以实现对热管理组件中控温材料泄漏的探测。由此,降低安全隐患存在的风险,避免造成致命性的、不可挽回的损失。
本发明公开了一种锂电池相变热管理组装结构,解决锂电池在工作过程中热量集聚未能及时排出,不同部位温度集聚状况也不同,导致电池温差大的问题,包括铝端板,串联铜排,其特征是所有的锂电池分别由一个个相互平行的支架固定,每个支架的一侧均设有一块相变铝板,软包电芯充放电过程产生的热量直接被相变铝板吸收存储,且在相变铝板温度上升过程中,相变铝板将吸收的热量与外部进行传导,以降低软包电芯的温度以及温度集聚性。结构稳定可靠,每件软包电芯均有独立的相变铝板,大幅降低成组后的锂电池充放电温升,减小软包电芯温差,提高了锂电池在使用中的性能和寿命。
本发明公开的是一种电池模组导热板排布优化方法,所述排布优化方法包括以下具体步骤:步骤一:电池模组由N个电池单体组成,电池单体与单体之间留一定的空隙,从电池模组外侧至模组中心的空隙逐渐增大;步骤二:以电池使用工况的电流大小和使用时间为依据,以步骤一中电池单体与单体之间的空隙以及电池单体与模组箱体之间的空隙为变化参数搭建热仿真模型;步骤三:分别计算电池单体纵向和横向的热导率。本发明不仅可以在不增加工艺复杂性的情况下合理布局板材,减轻动力电池模组的重量,而且可以增加电池模组的散热能力。