本发明公开了一种该大口径天线的天线主反射面和天线机构独立设计,所述天线机构通过驱动电机安装在卫星上,所述驱动电机的框架两端各设置一加热器,两路加热器独立闭环控制;所述天线主反射面的背面粘贴有聚酰亚胺膜;所述天线主反射面的正面采用热控喷漆的被动热控设计。本发明将大口径天线主反射面和机构独立设计,单独控制,特别是对于电机框架两端的温差要求,采用加热器独立设计并且闭环控制可以精准控制两端温差。天线主反背面采用粘贴聚酰亚胺膜的特殊热设计可以借用星体热量进行低温补偿,确保在天线温度低时能够从星体获得热量补偿,在天线温度高时能够向外散热,不但可以精准控制而且可以节省能源。
本发明涉及动力电池液冷系统热管理模块大小循环控制方法,通过集成式热管理系统实现多种模式下控制电池组内电池液的温度,所述集成式热管理系统内部包含制冷加热单元、水箱、水泵、电磁阀以及控制系统,所述制冷加热单元的主要由制冷制热板构成,且集成式热管理系统具有三个工作模式,分别为低温散热模式、制冷模式、制热模式,使电池始终处于最佳工作温度10℃ 35℃内;该方法通过响应电池温度控制需求的核心部件,它通过读取BMS发送的车辆状态的温度,温差等信息,控制自身水泵,冷暖单元,电磁水阀的工作,可以实现维持电池工作在最佳温度区间的目标。
本发明公开了一种电动车电池包温度管理分析方法,包括:步骤S1,水冷电池包分析,具体包括S11~S14:步骤S11,前端冷却模块集成仿真;步骤S12,三维整车热管理系统校核;步骤S13,空调系统和电池包一维、二维和三维集成仿真;步骤S14,降温系统验证,所述降温系统包括电池冷却模块、客舱模块和前端模块;步骤S2,自然风冷电池包瞬态分析,具体包括:获取电池包的几何数据和性能参数,采用ANSA、RADTHERM、CCM+搭建电池包一维模型、电池包二维和 或三维模型,采用多轮仿真优化计算,获得自然风冷下电池包热管理性能。本发明能够有效的规避电池包前期设计的风险问题,延长电池包的使用寿命,给主机厂提供一个高效的规范设计流程。
本发明提供一种混动汽车热管理系统及混动汽车,根据不同的温度对动力电池实施冷却,在温度达到第一预设值时,动力电池中的冷却液只在自身内部循环;在温度达到第二预设值时,动力电池中的冷却液利用电池散热器进行散热;在温度达到第三预设值时,动力电池中的冷却液通过冷凝器中的冷媒进行散热。本发明的混动汽车热管理系统能够针对动力电池不同的工况采用不同的冷却方式对动力电池进行冷却,冷却效果好,且降低了热管理相关部件的能耗,使整车油耗降低。
本发明公开一种新型相变热管理动力电池模组,包括模组、固定支架及绝缘导热管,模组由若干电芯排布组成;模组安装于固定支架内;绝缘导热管具有若干间隔排布的管本体和用于连通相邻两个管本体的连接管,管本体沿模组的长度方向延伸,管本体的两侧且沿其长度方向排布有若干电芯,管本体与电芯的侧壁连接,绝缘导热管内注有相变材料。本发明利用与电芯的侧壁相连接的导热塑料将热量传递给绝缘导热管内的相变材料,在相变材料还未熔融呈液体状态之前,利用相变材料的相变潜热将热量存储于相变材料中,相变材料变成熔融状态时,再利用相变材料的流动性来平衡模组的各个电芯之间的温度差,使模组的各个电芯的温度保持一致。
本实用新型公开了一种电动汽车热管理装置,包括电池包、前端模块、第一三通阀及第二三通阀,电池包的两端分别与第一三通阀的进液口和第一供水组件连接,第一三通阀的两个出液口与第一供水组件之间分别连接第一换热器的第一回路和第二换热器的第一回路,第一换热器的第二回路分别连接第二三通阀的两个出液口,第二三通阀的进液口依次与加热组件和第二供水组件连接,第二供水组件与第二三通阀的第一出液口连接,第二换热器的第二回路与制冷组件连接,前端模块依次与第三供水组件和散热组件连接形成散热回路,制冷组件至少包括冷凝器,冷凝器和散热组件设于靠近前端模块的位置。本实用新型中电动汽车热管理装置解决了电动汽车热管理效率低的问题。
本发明涉及激光医疗设备技术领域,公开了一种切割与止血并行手术的复合激光医疗装置及方法,其中装置包括:复合激光部件;复合激光部件内含复合结构激光模块和激光谐振腔;复合结构激光模块包括复合二极管激光器和复合激光晶体;装置采用单一复合结构激光模块置于单一激光谐振腔中产生同时空的2 02μm和1 06μm特殊复合激光;2 02μm激光和1 06μm激光分别作为人体软组织手术的切割激光和止血激光。本发明提供的一种切割与止血并行手术的复合激光医疗装置及方法,产生同时空且高平均功率的2 02μm和1 06μm特殊复合激光,解决了并行进行人体软组织切割与止血的激光手术问题,且设计独特,结构紧凑简单。
本发明属于48V弱混系统发动机SCR热处理技术领域,具体涉及一种基于48V弱混系统的SCR热管理系统及排放优先控制方法。本发明所述的排放优先控制方法包括以下步骤:计算当前电池的电量,计算当前车辆的需求扭矩,并需求扭矩计算驱动系统所需电池电量,计算安全系统所需电池电量,建立SCR的热模型,并根据热模型计算SCR的加热系统所需电池电量,若电池的电量大于安全系统和加热系统所需电池电量之和时,电池优先为安全系统和加热系统提供电量并将剩余电量分配给驱动系统。通过使用本发明的SCR热管理系统及排放优先控制方法,能够充分的利用电池的电量,合理进行电池电量的分配,降低了发动机尾气排放不达标的问题,减少了结晶现象的产生。
本发明公开了一种新能源汽车锂离子动力电池用导热的弹性二氧化硅气凝胶部件,包括:弹性二氧化硅气凝胶异型件、单体电池芯和导热片,单体电池芯外连接有导热片,连接有导热片的单体电池芯设于弹性二氧化硅气凝胶异型件的型腔内,形成单体电池芯小模组。通过上述方式,本发明实现对锂离子动力电池模组内的单体电池芯形成有效的综合防护;弹性二氧化硅气凝胶异型件对单体电池芯起到了减振防冲击的作用,且具有阻燃的功能,能使得单体电池芯的工作温度处在新能源汽车锂离子动力电池热管理系统控制的安全的温度范围内;提高了新能源汽车锂离子动力电池供电的可靠性和安全性,助力我国新能源汽车产业的发展有着重要作用。
本实用新型公开了一种纯电动汽车整车热管理系统,设有可调节进风格栅,还包括电驱动系统、电池系统和空调系统。所述电驱动系统包括第一水泵、第一三向阀、电驱动散热器。所述电池系统包括电池冷却器、电池、PTC电加热器和第二水泵。所述空调系统包括空调加热芯、止回阀、第二三向阀。本实用新型公开的纯电动汽车整车热管理系统,将电驱动的热量导入到空调系统,在低温工况下辅助空调系统进行采暖,实现了热量循环利用。同时,通过对热管理系统各循环回路的智能控制,从而保证了电驱动、电池等均在合适的温度区间内工作,实现电动汽车完整的冷热系统管理。
本发明公开了一种无人机低温电源系统及控制方法,包括动力系统与控制系统,动力系统包括主动力电池系统和备用预热电池系统,控制系统包括控制器、电池状态监控模块、充放电控制模块、热管理模块和通讯模块。本发明解决了以电池为动力来源的无人机电池低温性能衰退问题,利用备用电源系统进行低温预热从而恢复主动力电池系统性能;电池状态监控模块通过采集无人机运行过程中的主动力电池组和低温预热电池组各单体电压、电流以及温度信息,同时监控无人机主动力电池系统低温剩余电量(SOC),当电池表面温度低于0℃时,低温备用电源开始工作,驱动加热系统为主动力电池组加热,提升电池性能;本发明适用于低温寒冷地区工作的电动无人机系统。
本发明提供了一种发动机热管理系统,涉及车辆发动机技术领域。发动机热管理系统,包括第一循环冷却回路和第二循环冷却回路。第一循环冷却回路包括由管路串接的机械水泵、缸体阀、缸体水套和缸盖水套,其中,在缸体阀前,机械水泵还与缸盖水套通过管路直接相连,第二循环冷却回路包括由管路依次串接在缸盖水套后的节温器和散热器。本发明的发动机热管理系统集成化高,布置合理,分离式冷却、缸盖集成排气歧管可以实现发动机快速升温,暖机阶段加热机油,减小摩擦,满足整车采暖,高温冷却机油、增压器、缸体缸盖燃烧高温区域,极大提升了发动机的性能,降低了发动机油耗,优化了发动机排放。