一种电动汽车热管理控制系统,包括各控制器和各执行器,所述的电动汽车热管理控制系统还包括TMCU,TMCU与所述的每个控制器之间通过CAN网络连接,并与所述的每个执行器之间通过线束连接,所述的TMCU包括状态检测与监控模块、热管理模式识别模块、零部件执行控制模块、功率与能量管理模块、故障处理与报警模块以及标定模块。本发明通过热管理的控制集中,而不再分散到多个控制器,大大降低了耦合度,减少了通讯量,降低了出错率,且有利于车辆诊断和后期维护。另一方面,本系统的灵活度高、执行性强,不受整车其他控制器的制约,可适配不同的厂商生产的控制器。
本实用新型涉及电池热管理技术领域,特别是一种电池组的热管理装置。该热管理装置包括控制器、电池组调温液输出端口和调温液输入端口,电池组调温液输出端口和调温液输入端口之间连接有加热回路,加热回路上设置有燃气加热装置,燃气加热装置包括储气罐和燃气加热箱体,加热回路设置于燃气加热箱体内,燃气加热箱体内设置有带电火花器的电控燃气喷嘴,储气罐的气体输出端通过管路连接电控燃气喷嘴,通过电控燃气喷嘴控制燃气加热箱体的温度,实现快速加热处理,在电池组处于极端环境时,能够保证电池组的正常工作,保证电池组工作效率,解决了现有电池组的加热装置在极端环境下无法快速加热导致的加热效果较差的问题。
一种电池低温热管理装置及热管理方法,电池低温热管理装置包括散热器、第一控制阀、第一加热装置、第一水泵形成的第一循环、电池包、第二控制阀、第二水泵、冷却装置及换热装置形成的第二循环以及暖风芯子、第三控制阀、第二加热装置和第三水泵形成的第三循环,第一控制阀控制第一循环的连通,第一水泵控制第一循环的流通;第二控制阀控制第二循环的连通,第二水泵控制第二循环的流通;第三控制阀控制第三循环的连通,第三水泵控制第三循环的流通;第二循环上设有受电池包温度影响而打开或关闭冷却功能的冷却装置。本发明通过对电池包不同阶段温度的控制,而使得电加热工作消耗降低,既保证了电池的充放电性能,又可延长电池的续航里程。
本发明提供一种电动汽车低温充电的电池热管理方法及系统,该方法包括:设置循环冷却管环绕在动力电池上,冷却管上设有加热模块和循环泵,加热模块用于对循环冷却管内的冷却液加热升温,循环泵用于驱动所述冷却液与动力电池进行热交换;在接收到充电信号时,获取动力电池的电池单体温度,如果电池单体温度小于第一温度阈值,则动力电池通过DCDC转换器对加热模块和循环泵供电,整车控制器控制加热模块和循环泵工作,使电池单体温度升高;如果电池单体温度大于第二温度阈值,则整车控制器控制充电继电器闭合,使充电桩或充电机对动力电池充电,其中,所述第二温度阈值大于所述第一温度阈值。本发明能提高电动汽车在低温环境下的充电效率。
本发明公开了一种电阻丝液体加热管安装结构,多个加热管安装在安装板上,每个加热管内设有加热丝,多个加热丝依次并联且多个加热管的长度不同。通过上述优化设计的电阻丝液体加热管安装结构,通过将多个电阻丝加热管设计为长度不同电阻不同,从而根据实际使用环境选择适合功率和电阻的加热管,保证加热效率和使用安全性。
本发明提供了一种节温器故障的主动诊断方法及系统,当正常状态下冷却管路出口处的冷却介质的温度T2与当前冷却管路出口处的冷却介质的实时温度T0的差值绝对值大于一第一温差阈值dt1时,则启动主动诊断,否则,进行被动诊断。在主动诊断过程中,当主动诊断过程中的温降斜率大于第一温降斜率阈值KC0或主动诊断进行过程中当前冷却管路出口处的冷却介质的实时温度T0’小于第一温度阈值TC1时,则所述节温器故障,否则,所述节温器无故障。在不增加新硬件的情况下,通过主动诊断,增强节温器全开的情况下冷却效果,提升故障区分度。极大的提升了诊断的可靠性,降低了售后节温器误报和漏报故障的风险。
本实用新型涉及一种车辆及其热管理系统,该热管理系统包括空调系统冷却管路、电机散热系统冷却管路和制冷剂 冷却液换热器,空调系统冷却管路中设置有车内空气 制冷剂换热器,制冷剂 冷却液换热器的第一组端口和第二组端口分别设置在空调系统冷却管路和电机散热系统冷却管路中;制冷剂 冷却液换热器的第一组端口的两端并联有空调制冷剂旁路,空调制冷剂旁路中串联设置有车外空气 制冷剂换热器和乘客区侧电子膨胀阀。在本实用新型中,当空调系统处于制热模式下时,通过控制乘客区侧电子膨胀阀的开度,使少量的制冷剂流经车外空气 制冷剂换热器,从而避免了流经乘客区侧电子膨胀阀的低温制冷剂会导致车外空气 制冷剂换热器结霜的现象。
本发明公开一种有助于柴油机快速升温的控制方法,柴油机设置增压前进气管、增压后进气管、增压器、涡前排气管、涡后排气管、后处理箱、后处理排气管、控制装置;后处理排气管通过连通管与增压前进气管连通,连通管上设置阀门;控制装置与用于检测后处理排气管的排气温度的第一温度传感器通信连接,柴油机启动后,当后处理排气管的排气温度低于第一温度120℃ 150℃时,控制装置开启阀门。尾气通过连通管进入到增压前进气管中,将冷态NRTC的提温过程缩短,让SCR系统尽快进入尿素喷射状态,将该阶段的NOx排放进一步降低,提高低温情况下SCR后处理系统NOx的排放物转化效率。本发明还公开一种有助于柴油机快速升温的控制装置。
本实用新型公开了一种锂电池组热管理系统,包括左右两端呈开口设置的长方体放置箱、防护罩和加热装置,所述长方体放置箱的底部内腔设有插接槽,所述加热装置包括有插接板,所述插接板插接在插接槽内,所述插接板上端设有凹槽,所述凹槽内部设有加热丝,所述凹槽上端设有防护盖板,所述防护盖板的表面设有透气孔,所述长方体放置箱的中部上端设有锂电池放置槽,所述锂电池放置槽的底部设有透气网板,本实用新型主装夹板和副装夹板可共同将放置于锂电池放置槽内的锂电池固定住;当锂电池使用温度寒冷时,加热丝通电,保证锂电池的工作温度适宜;当锂电池使用温度较高时,通过设备安装箱内部安装有的风扇,当风扇工作后,给锂电池降温。
本实用新型公开了一种基于帕尔贴效应的新能源汽车乘员舱加热系统。其包括冷凝器、MCU高压附件、TEC加热器及乘员舱,所述冷凝器位于乘员舱的底部前方,所述MCU高压附件位于乘员舱的底部后方,所述TEC加热器贴合安装在乘员舱的底部,所述冷凝器、MCU高压附件和TEC加热器通过水路连接形成闭环回路;其中,所述冷凝器用于温度交换,所述MCU高压附件是由电机、电机控制器以及充电机组成的高压附件组合;MCU高压附件产生热量加热水路液体,TEC加热器利用帕尔贴效应产生热泵原理,将热量从水路转移到乘员舱中。本实用新型安装结构简单,高效地为乘员舱加热,降低整车能耗,具有高效合理的新能源汽车热管理能力。
本实用新型公开了一种基于帕尔贴效应的新能源汽车电池热管理系统。其包括冷凝器、MCU高压附件、电池包及TEC加热器,所述冷凝器以及MCU高压附件位于新能源汽车的前端,所述电池包以及TEC加热器安装在新能源汽车的后端,所述冷凝器、MCU高压附件和电池包通过水路连接形成闭环回路;其中,所述冷凝器用于温度交换,所述MCU高压附件是由电机、电机控制器以及充电机组成的高压附件组合,所述TEC加热器以贴合方式安装在电池包上;MCU高压附件产生热量加热水路液体,TEC加热器利用帕尔贴效应产生热泵原理,将热量从水路搬移到电池包中。本实用新型安装结构简单,能提升电池加热效率,降低整车能耗,具有高效合理的电池热管理能力。
本实用新型公开了一种基于帕尔贴效应的新能源汽车热管理系统。其包括冷凝器、MCU高压附件、乘员舱及电池包,所述冷凝器以及MCU高压附件位于乘员舱的底部前方,所述电池包安装在乘员舱的底部后方,所述电池包的表面贴合安装有第一TEC加热器,所述乘员舱的底部贴合安装有第二TEC加热器,所述冷凝器、MCU高压附件、第二TEC加热器以及第一TEC加热器通过水路连接形成闭环回路;MCU高压附件产生热量加热水路液体,第一TEC加热器和第二TEC加热器分别利用帕尔贴效应产生热泵原理,将热量从水路搬移到电池包和乘员舱中。本实用新型安装结构简单,实现热量在整车系统内进行调配,降低整车能耗,避免能源浪费,具有高效合理的新能源汽车热管理能力。