本发明涉及一种电动汽车用整车液流循环热管理系统,该系统针对目前电动汽车相对独立的各个部件的加热或冷却装置以及电池、电机各自拥有的一套制冷装置的现状,用一套结构简单的系统装置实现整车热量的统一分配管理,解决了整车制冷及采暖问题,保证车辆各部件的正常运转及车内人员的舒适性,同时利用电机余热加热电池,为整车降低能耗,提升整车的经济性。
本发明涉及一种车辆及其热管理系统,该热管理系统包括空调系统冷却管路、电机散热系统冷却管路和制冷剂-冷却液换热器,空调系统冷却管路中设置有车内空气-制冷剂换热器,制冷剂-冷却液换热器的第一组端口和第二组端口分别设置在空调系统冷却管路和电机散热系统冷却管路中;制冷剂-冷却液换热器的第一组端口的两端并联有空调制冷剂旁路,空调制冷剂旁路中串联设置有车外空气-制冷剂换热器和乘客区侧电子膨胀阀。在本发明中,当空调系统处于制热模式下时,通过控制乘客区侧电子膨胀阀的开度,使少量的制冷剂流经车外空气-制冷剂换热器,从而避免了流经乘客区侧电子膨胀阀的低温制冷剂会导致车外空气-制冷剂换热器结霜的现象。
本发明涉及一种车辆热管理系统及车辆,该车辆热管理系统包括空调系统冷却管路和电机散热系统冷却管路,空调系统冷却管路中依次设置有车内空气-制冷剂换热器、第一膨胀阀以及车外空气-制冷剂换热器;车外空气-制冷剂换热器的散热面上设置有换热机构,车外空气-制冷剂换热器和换热机构构成一个相互换热单元,换热机构的两个端口设置在电机散热系统冷却管路中。在本发明中,当空调系统处于制热模式下时,电机散热系统冷却管路中的高温冷却液通过该换热机构给车外空气-制冷剂换热器进行加热,有效避免了空调系统冷却管路中经过第一膨胀阀的低温制冷剂会使车外空气-制冷剂换热器结霜的现象。
本发明涉及一种车辆及车辆热管理系统,该车辆热管理系统包括空调系统冷却管路和电机散热系统冷却管路,空调系统冷却管路中依次设置有车内空气-制冷剂换热器、第一膨胀阀、车外空气-制冷剂换热器以及相应的管道;该车辆热管理系统还包括制冷剂-冷却液换热器,制冷剂-冷却液换热器的第一组端口设置在车外空气-制冷剂换热器和第一膨胀阀之间的管道中,制冷剂-冷却液换热器的第二组端口设置在电机散热系统冷却管路中。在本发明中,当空调系统处于制热模式下时,电机散热系统冷却管路中的废热通过制冷剂-冷却液换热器给流过第一膨胀阀的制冷剂进行加热,可以防止车外空气-制冷剂换热器结霜。
本发明涉及电动车设备领域,尤其是一种双区电池热管理系统及方法。本发明针对现有技术存在的问题,提供一种双区电池热管理系统及方法,为最大限度的扩大电池包系统的温度适应范围,将电池包分为大容量电池A和小容量电池B两个区做动力源,分区热管理(加热或冷却),并通过BMS电源管理系统、冷却控制系统以及热管理回路系统产生热空气和冷空气,并通过BMS电源管理系统控制两个电子三通阀的位置,实现对大容量电池包和小容量电池包的加热或冷却。本发明包括BMS电源管理系统、冷却控制系统以及热管理回路系统等,通过形成冷空气或热空气回路,对双电池系统进行加热或冷却。
本发明实施例公开了一种功率边界数学模型的建立方法及装置,方法包括:获取不同温度、荷电状态SOC时刻的持续放电功率、脉冲放电功率、持续充电功率和脉冲充电功率;根据所述持续放电功率、脉冲放电功率、持续充电功率和脉冲充电功率计算基于电芯功率特性的脉冲边界;对电芯进行评估,若判断获知当前电芯不满足当前状态的功率性能,则去除当前电芯;根据当前的故障状态调节所述基于电芯功率特性的脉冲边界,得到功率边界数学模型。本发明实施例通过计算基于电芯功率特性的脉冲边界来建立功率边界数学模型,能够更精确评估系统的实时性能状态,对电池进行最优的管理,给予车辆最强劲的输出能力,最高效的制动能量回收,并能延长电池使用寿命。
本实用新型公开了一种降低接收机噪声的热管理装置,包括壳体、半导体制冷片、散热机构、盖板和隔热板;所述壳体内具有容纳接收机的空间,所述壳体上开设开口,所述盖板设置在开口上与壳体组成盒体结构,接收机固定在壳体内,所述半导体制冷片的一个工作面与壳体贴合在一起,另一个工作面与散热机构贴合,所述隔热板包覆在半导体制冷片的侧面从而隔绝半导体制冷片的两个工作面。采用均热板和散热器,使整个装置的导热或者导冷效果更佳。采用半导体制冷片(TEC)使整个装置的体积小、重量轻、易于安装及操作。采用半导体制冷片(TEC)使接收机的温度可以达到-60℃的低温,由于普通空调控温的最低温度。
本发明公开一种适用于高寒地区的电动汽车动力电池热管理装置,其包括保温箱体、冷却装置、电池温度检测元件和控制处理器模块;在使用时,将电池安置到保温箱体内的电池放置部,使得冷却装置的吸热部和电池温度检测元件贴在电池上;当工作时,电池的温度高过预设值时,电池温度检测元件将信号传递给控制处理器模块,然后控制处理器模块控制冷却装置开始冷却工作,冷却装置的吸热部将热量吸收,并将废热传递给散热部,然后散热部将废热挥散到保温箱体外界;当电池温度低于预设值时,电池温度检测元件将信号传递给控制处理器模块,然后控制处理器模块控制冷却装置停止冷却工作,那么电池持续发热所产生的热量积累在保温箱体。
本发明公开了一种电池包的热管理系统,包括:多个换热板、多个支撑板、多个集流管和管接头。所述换热板内设有纵向贯通的换热腔;多个所述换热板与多个所述支撑板沿水平方向交错设置;所述集流管设置在所述换热板的端部且与所述换热腔连通;所述管接头连接在相邻的两个所述集流管之间,且所述管接头横跨所述支撑板。该热管理系统的整体结构更紧凑,整体重量较轻,且整体换热效果更好。
本发明公开了一种燃料电池汽车动力总成的耦合热管理系统。所述耦合热管理系统包括燃料电池散热管路、氢气加热系统、氢气加热系统旁通水管路、散热器、水箱、循环水泵和第一换向装置;通过第一换向装置将燃料电池散热管路流出的水引入氢气加热系统,通过氢气加热系统利用燃料电池散热管路流出的水中所蕴含的热量对车载高压储氢气瓶进行直接或间接的加热。本发明的热管理系统实现了利用燃料电池工作过程中产生的废热抑制车载高压储气瓶在向燃料电池供氢过程中的温降,在确保燃料电池汽车动力总成安全性的前提下有效避免了能量的浪费。
本实用新型公开了一种纯电动汽车用汽车级整车控制器,包括带有控制器外部接口的壳体,设置在控制器壳体内的整车控制器电路;整车控制器电路包括整车控制微处理器、整车电源管理单元、整车驱动微处理器、整车数据采集驱动单元、整车通讯单元。本实用新型优点在于整车控制器设计采用核心控制与接口采集驱动分开隔离设计,系统设计灵活,设计充分考虑电磁兼容性,结构简单紧凑,易于装配,各部件设计易于产品化,并具有高安全、高稳定和高可靠性。
本实用新型涉及一种动力电池包热管理系统气密性检测工装及检测系统,检测工装包括通气杆、胀紧杆和弹性胀紧部,所述弹性胀紧部套设在所述通气杆一端的外侧壁上,所述胀紧杆螺纹连接在所述通气杆中部的外侧壁上且其一端靠近所述弹性胀紧部设置。本实用新型的气密性检测工装,通过在通气杆的外侧壁上设置弹性胀紧部,连接件连接到动力电池包管理系统上时,可通过弹性胀紧部实现与动力电池包管理系统密封连接,检测工装结构简单、操作便捷、维修便利。