本发明涉及车辆热管理装置。车辆热管理装置包括第一循环部、第二循环部和流量改变部。第一循环部被设置在第一循环路径的第一流路处,并且使第一热交换介质在第一循环路径中循环,第一流路经过第一热交换器,第二流路经过第一膨胀阀和第二热交换器,第三流路经过第二膨胀阀和吸热部。第二循环部使第二热交换介质在第二循环路径中循环,第二循环路径由经过发热体的第四流路、经过散热器的第五流路以及经过散热部和第一热交换器的第六流路构造。流量改变部增加第二热交换介质的流量。
本发明公开了一种燃料电池热管理系统,包括冷液循环系统、热液循环系统、第一温度传感器、第二温度传感器、中央处理器及设置在电池上的散热片;冷液循环系统、热液循环系统、第一温度传感器、第二温度传感器分别与中央处理器连接;冷液循环系统包括第一水泵控制器、第一阀门控制器及冷循环管道,热液循环系统包括第二水泵控制器、第二阀门控制器及热循环管道,第一水泵控制器、第二水泵控制器、第一阀门控制器及第二阀门控制器分别与中央处理器连接;散热片与所述冷循环管道及热循环管道连接。本发明通过温度测量智能调节水泵功率,从而调整循环速率,能快速将电池温度控制在合理范围内,同时节约了电能。
本发明公开了一种基于热阻网络模型的电池热失控预测方法,方法把大型电池包内的电池单体简化成热网络节点,将电池组系统内的对流、导热、辐射过程简化成热阻,利用电路求解方法实现电池组传热过程的快速计算。此外,将不同的冷却方式简化成相应的热阻模块嵌入电池组热阻网络,可以评估冷却方式对热失控防护的有效性。热失控预测过程包括:基于电池单体的传热特征参数建立单体热阻网络;计算电池稳态工作发热量并设定相应的热管理方案,通过实验获得热失控过程电池单体发热特征;建立电池组热阻网络;给定热失控发生位置并设定正常电池热失控温度下限;记录预测电池组损毁进度和损毁时间,并评定不同热管理措施的防护效果。
本发明适用于动力电池技术领域,提供了一种动力电池热管理系统及其方法,该系统包括:由电池串并联组成的电池包,电池串由电芯并联组成;分别与电芯接触连接的导热板,导热板内设有冷却液流道,冷却液流道通过电磁阀与冷却液容器连接,冷却液容器内设有电子水泵;及与电磁阀和电子水泵通讯连接的电池管理系统。本发明在当温差过大时,用冷却液对最高温度电芯进行降温,以达到电芯温度的均衡,有利与保证电池的使用寿命,同时保证电池性能。
本发明公开了一种燃料电池余热驱动的电动汽车动力蓄电池热管理系统,包括蒸汽发生装置、第一气体喷射器、第二气体喷射器、回热器、车外换热器、预冷器、节流阀、车内换热器及动力蓄电池换热板,该系统能够利用燃料电池的余热进行制冷或制热,有效解决不同环境温度下电动汽车动力电池的热管理问题。
本发明公开了一种电动汽车热管理系统,包括电池包、板式换热器、四通换向阀及第一三通阀,板式换热器的第一回路的两端分别与电池包和水泵连接,板式换热器的第二回路的两端分别与第一电子膨胀阀和截止阀连接,四通换向阀的第一阀口依次与压缩机和储液器连接;第二阀口与第一三通阀的进液口连接;第三阀口分别与储液器和截止阀连接;第四阀口与换热组件连接,截止阀和板式换热器的连接管路与第一三通阀的第一出液口连接,第一三通阀的第二出液口与冷凝器连接,冷凝器与第二电子膨胀阀连接,第二电子膨胀阀和储液器、截止阀之间连接有冷却组件,换热组件的周围设有风扇。本发明中的电动汽车热管理系统解决了电动汽车热管理效率低的问题。
本实用新型涉及电池热管理技术领域,特别是一种电池组的热管理装置。该热管理装置包括控制器、电池组调温液输出端口和调温液输入端口,电池组调温液输出端口和调温液输入端口之间连接有加热回路,加热回路上设置有燃气加热装置,燃气加热装置包括储气罐和燃气加热箱体,加热回路设置于燃气加热箱体内,燃气加热箱体内设置有带电火花器的电控燃气喷嘴,储气罐的气体输出端通过管路连接电控燃气喷嘴,通过电控燃气喷嘴控制燃气加热箱体的温度,实现快速加热处理,在电池组处于极端环境时,能够保证电池组的正常工作,保证电池组工作效率,解决了现有电池组的加热装置在极端环境下无法快速加热导致的加热效果较差的问题。
本发明公开一种大功率锂离子电池热管理系统,包括由多个锂电池单体构成的锂电池模组、若干热管散热单体、模组箱体、相变冷却液、温度液位采集器等。本发明通过将电池单体浸没于相变冷却液,并结合热管散热单体快速带走箱体内部热量。使车载储能系统在高温环境下能工作在适宜的温度范围之内,能够有效提高电池单体的温度一致性,能够有效提高轨道车辆储能系统高温下的安全可靠性,并且能够提高经济指标低、体积质量指标低和环保指标。
本实用新型公开了一种轨道交通储能装置的热管理系统,包括由多个储能单体构成的储能装置、箱体、热管阵列、气体管道、液体管道、液体槽、液位控制机构、加热器、散热器、相变储能器、传感器、阀门和控制单元;热管阵列穿插于每个储能单体之间,热管阵列的顶部通过气体管道连通至液体槽,在气体管道上设置散热器和 或相变储能器,热管阵列的底部通过液体管道连通液体槽,在液体槽中设置有液位控制机构;在箱体底部设置加热器;控制单元连接至加热器、散热器、传感器和阀门。本实用新型能够保证热管对储能装置高效散热,使储能装置工作中最佳温度范围内;满足轨道交通车辆在不同工况尤其是极端情况下储能系统快速散热。
本实用新型提出了一种用于电子设备热设计的实验教学装置,旨在提供一种高效可靠且能全面引入各散热性能影响因子的教学实验平台,包括实验控制台和多个实验平台;实验控制台包括第一无线通信模块和操控模块,其中:第一无线通信模块用于建立操控模块与实验控制板的数据通信,操控模块用于调节实验参数、实时显示各测温点温度曲线图及总体温度分布云图、导出历史实验数据以及电子版实验报告单;实验平台包括实验箱、实验控制板和电源模块,其中:实验箱包括带有不同栅格孔的通风挡板和用于加热、散热、预紧及测温的功能模块,实验控制板用于控制上述功能模块,电源模块用于向实验控制板及上述功能模块提供电能。
本实用新型公开了一种电池热管理系统以及电动汽车,涉及电池技术领域。该电池热管理系统包括动力电池、电池组支架和热管。固定孔与安装孔间隔设置,动力电池穿过固定孔,且与电池组支架固定连接,以将动力电池上的热量传递到电池组支架上,热管的一端伸入安装孔,且与电池组支架固定连接,热管能够吸收动力电池传递给电池组支架的热量,并将其散发到外界。与现有技术相比,本实用新型提供的电池热管理系统由于采用了间隔安装于电池组支架上的热管和动力电池,所以能够将动力电池产生的热量间接通过热管散发到外界,被动地对动力电池进行散热冷却,不需要消耗额外的电能,散热效果好,节约能源,实用高效。
本发明公开一种有助于柴油机快速升温的控制方法,柴油机设置增压前进气管、增压后进气管、增压器、涡前排气管、涡后排气管、后处理箱、后处理排气管、控制装置;后处理排气管通过连通管与增压前进气管连通,连通管上设置阀门;控制装置与用于检测后处理排气管的排气温度的第一温度传感器通信连接,柴油机启动后,当后处理排气管的排气温度低于第一温度120℃ 150℃时,控制装置开启阀门。尾气通过连通管进入到增压前进气管中,将冷态NRTC的提温过程缩短,让SCR系统尽快进入尿素喷射状态,将该阶段的NOx排放进一步降低,提高低温情况下SCR后处理系统NOx的排放物转化效率。本发明还公开一种有助于柴油机快速升温的控制装置。