本实用新型公开了一种电池热管理系统集成机组,包括第一回路、第二回路、ECU,第一回路和第二回路与ECU电连接,第一回路由第一支路和第二支路组成,第一支路通过热换器与第二回路并列连接,电子膨胀阀与换热器为集成一体式设计,水冷板入水口端、出水口端设置有温度传感器,冷凝器出口端设置有压力传感器,电子膨胀阀出口端设置有温度压力传感器。本设计采用并联预热及制冷双回路设计,可减小管路水阻,同时冷热不干扰,降低了系统总体能耗,优化了集成机组部分节点管路布置,同时避免了管路爆破故障。
本发明提供了一种软包电池热管理和阻止热失控装置,用于对汽车中软包电池的表面温度进行智能调节控制并防止热失控的蔓延,包括:多个换热板,可拆卸地置于每个软包电池的两侧,内部设有通过换热介质的流动进行换热的散热器管路;进液集管段,与多个换热板连接,用于换热介质的流入;以及出液集管段,平行设置在进液集管段的下方,与多个换热板连接,用于换热介质的流出,其中,换热板由泡沫铝板和复合相变材料制成,复合相变材料填充在泡沫铝板中并与散热器管道嵌套成型,换热板上设有温度传感器与热流密度传感器,根据两种数据智能调控电池温度,当复合相变材料温度不变时,若热流密度急剧增加达到阈值,电池管理系统对电池进行断电处理。
本发明公开了一种芳纶 碳纳米管杂化气凝胶薄膜、其制备方法及应用。所述芳纶 碳纳米管杂化气凝胶薄膜包括连通的三维网络状多孔结构以及覆设在三维网络状多孔结构上的疏水层,所述三维网络状多孔结构由芳纶纳米纤维和碳纳米管相互搭接形成。所述制备方法包括:将碳纳米管分散液、芳纶纳米纤维分散液混合形成混合分散液;并施加于衬底上,再转移至凝固浴,经溶胶-凝胶置换形成杂化凝胶薄膜,再进行干燥处理,获得杂化气凝胶薄膜,最后以疏水树脂溶液浸润,获得芳纶 碳纳米管杂化气凝胶薄膜。本发明的杂化气凝胶薄膜具有良好的力学、电学和疏水性能,以及优异的焦耳热效应和电磁屏蔽性能,可应用于智能薄膜、个人热管理、可穿戴电磁防护等领域。
本发明公开了一种电池热管理系统,包括箱体、泵体及制冷循环组件,制冷循环组件包括首尾串联的压缩机、冷凝器、板式换热器及压力膨胀阀,板式换热器用于与冷却液换热,泵体与板式换热器连通,泵体用于将冷却液输入电池包,压缩机设于箱体内,压缩机与箱体之间设有第一缓冲件及第二缓冲件,第一缓冲件及第二缓冲件相对倾斜设置。上述电池热管理系统,泵体与制冷循环组件可配合对电池包降温,第一缓冲件与第二缓冲件相对倾斜设置,第一缓冲件与第二缓冲件均可起到缓冲作用,且第一缓冲件与第二缓冲件可对冲,减小压缩机的振动幅度,则上述电池热管理系统可持续提供对电池包的降温,工作的稳定性较好。
本发明提供了一种移动式动力电池热管理系统检测装置,用于检测并评估动力汽车的动力电池的热安全性,包括:数据检测模块,包括温度传感器、热流密度传感器、蓝牙发射器以及用于接收并传输温度参数和热流密度参数的数据接收传输器;数据储存模块,用于接收并储存温度参数和热流密度参数,并将温度参数和热流密度参数上传至云端;以及综合评价模块,包括用于初步计算处理得到平均温度的第一数据处理器、用于初步计算处理得到平均热流密度和平均热流密度斜率的第二数据处理器、用于进行综合计算的综合数据处理器以及评价输出显示屏。本发明还提供了一种基于移动式动力电池热管理系统检测装置的检测评估方法来评价动力电池的热安全性。
本发明属于热管理领域,具体来说为一种热管理方法,包括以下步骤:步骤1:获取各个散热器的温度上升速率,根据温度上升速率确定最先达到冷却介质临界温度的散热器,并将该散热器作为优先控制的散热器;步骤2:根据优先控制的散热器的冷却介质的温度上升速率预判预设时间点的冷却介质的温度;步骤3:根据预设时间点的冷却介质的温度确定预设时间点的冷却介质的流量和冷却风速;步骤4:以预设时间点的冷却介质的温度对应的冷却介质的流量和冷却风速作为当前时刻的冷却介质的流量控制参数和冷却风速控制参数。该方法通过预判的方法和优先控制的法则,将涉及多组散热器的机动车的散热控制进行最优化,本发明还公开了用于实现该方法的系统和装置。
本申请公开了一种空间望远镜的智能热分析系统,包括接口模块;参数抽样模块,用于抽样并生成空间望远镜的多组热设计参数;热分析批处理模块,用于经由所述接口模块接收所述热设计参数,并将所述热设计参数以文本文件的形式批量输入有限元仿真软件进行仿真;参数提取模块,用于经由所述接口模块提取所述有限元仿真软件的仿真结果并构建仿真结果数据集;分析模块,用于基于所述仿真结果数据集进行热设计参数的灵敏度分析。该智能热分析系统自动进行参数抽样、批量热分析以及参数提取,能够有效节省人力,降低时间消耗,提升热分析效率。本申请还公开了一种空间望远镜的智能热分析方法、设备以及计算机可读存储介质,均具有上述技术效果。
本发明提供了一种带闪发器的具有并联回路的电动汽车空调热泵系统,包括:压缩机、第一电磁阀、室外换热器、第二电磁阀、第一热力膨胀阀、第二热力膨胀阀、第一室内换热器、第一电子膨胀阀、电池热管理模块、电机热管理模块、第二室内换热器、第三热力膨胀阀、闪发器以及气液分离器,各组件连通形成第一连通回路、第二连通回路、第三连通回路以及第四连通回路,当处于制冷模式时,通过第一连通回路对车内进行制冷,同时通过第二连通回路对电池和电机进行热管理当处于制热模式时,通过第三连通回路对车内进行制热,同时通过第四连通回路对电池和电机进行热管理,制冷模式和制热模式下制冷剂均通过气液分离器进入压缩机完成循环。
本发明提供一种电动汽车用集成间接式热泵的整车热管理系统,包括制冷剂回路、电池包液冷回路、电机散热回路和乘客舱制热冷却液回路;还实现了以下功能:乘客舱热泵制热除湿的同时进行电池冷却、间接热泵加热电池、间接热泵同时加热乘客舱及电池、电池与电机及车载功率部件热回收至乘客舱热泵采暖。本发明充分利用电机及车载功率部件发热量为热泵系统提供热量,进而提升整车热效率;且在-10~0℃低温条件时,采用间接式热泵为电池供热,降低加热功耗。
本发明属于燃料电池技术领域,具体涉及一种燃料电池排氢阀控制方法,该燃料电池排氢阀控制方法包括控制燃料电池启动并进行检测初始化,计算氢气消耗量,根据氢气消耗量满足预设消耗量,计算排氢时间,控制排氢阀开启并计时,根据排氢阀的开启时间满足排氢时间,控制排氢阀关闭,根据发明实施例的燃料电池排氢阀控制方法,氢气消耗量可反映氢气管路中杂质的含量,根据杂质的含量进行排氢,降低排氢时间不合理造成氢气浪费或者氢气浓度不足导致的电堆故障的频率。
本发明公开了一种车辆集成热管理系统,包括第一冷却水路和第二冷却水路,所述第一冷却水路中串联有动力电池和第一散热器总成;所述第二冷却水路中串联有控制总成、电机和第二散热器总成;所述第一散热器总成与第二散热器总成并联有同一热交换组件,所述热交换组件的两端通过管道与第一散热器总成和第二散热器总成的两端相连。本发明的车辆集成热管理系统具有降低成本、节约能源、有机统筹车辆上热量等优点。
本发明公开的一种动力电池包温度预调控系统和方法及热管理系统控制方法,涉及动力电池技术领域。该温度预调控系统包括电池包、热管理系统、汽车用电负载以及控制系统,控制系统包括控制器、采集模块和指令模块;采集模块采集电池包参数信息,与控制器中预设的参数值做比较后,通过指令模块对汽车用电负载和热管理系统进行控制,实现电池包温度预调控。本发明能够使电池包工作在较大的温度范围内,并能针对电池包出现的各种问题及时作出响应,尤其在放电电流较大、电池温升滞后时,预调节冷却液流量的大小,避免电池出现不可控的情况;同时,控制器具备不断学习,优化控制参数的功能,能够根据驾驶员驾驶习惯以及电池逐渐老化后不断进行调整。