本发明涉及热管理控制技术,更具体地说,涉及液流电池的热管理方法及系统,所述方法包括:温度传感器对流经进液管路的电解液温度进行采样,得到温度采样值;监控系统根据温度采样值判定进液管路的电解液温度是否超过预设温度阈值范围:若超过,则控制换热器的制冷量,使储液罐内的电解液温度变化,进而控制进液管路的电解液温度回到预设温度阈值范围内。本发明能够精确地对液流电池进行管理,并且管理效率高、耗能小。
一种Al与Ti混杂增强的石墨膜块体复合材料及其制备方法,将预处理的Ti箔和石墨膜交叉层叠放置于石墨模具后进行等离子活化烧结,得到石墨膜-钛层状块体复合材料,然后进行穿孔处理,使穿层方向形成贯穿直孔;随后采用挤压铸造工艺使熔融的铝液填充进石墨膜-钛层状块体复合材料的贯穿直孔中,得到Al与Ti混杂增强的石墨膜块体复合材料。本发明有效提高石墨膜-钛层状块体复合材料的抗弯强度,使其具有优异的力学性能;同时由于金属钛骨架对石墨膜垂直膜平面方向热膨胀系数的有效约束,还能有效降低石墨膜-钛层状块体复合材料穿层方向的热膨胀系数,从而使该复合材料的强度及穿层方向的热膨胀系数满足新型热管理材料的性能需求。
本申请提供一种单体电池及电池模组,通过在单体电池内部设置电池通孔,从而通过电池通孔来对单体电池进行热管理,从而使得单体电池的换热效率大幅提高。所述单体电池包括保护壳、位于所述保护壳内的电池本体以及由所述电池本体合围形成的电池通孔,所述电池本体由卷绕结构卷绕形成,所述电池通孔用于对所述单体电池进行温度管理;所述单体电池还包括正极耳和负极耳,所述正极耳和所述负极耳设置在所述电池本体上。本申请的电池模组包括多个层叠设置的上述单体电池。
本发明公开了一种电池包、车辆及储能装置,该电池包包括盖板、电池舱体、电池、制冷装置、继电器和气动开关,所述盖板与电池舱体形成容纳空间,所述电池位于容纳空间;所述盖板上设有用于引出电流的第一、第二电流输出端子,制冷装置一端与第一电流输出端子电连接,另一端串联所述继电器的主触点后与第二电流输出端子电连接,形成第一电流输出端子、第二电流输出端子、制冷装置的制冷回路,气动开关与低压电源、继电器的线圈串联后形成控制制冷回路开启与关闭的控制电路。本发明提供的电池包具有双重安全保护性能,结构简单,操作性强。
本发明公开了一种发动机润滑系统中机油热管理控制方法,包括:获取发动机主油道内的机油温度;判断机油温度是否小于第一温度阈值;如果是,控制可变排量机油泵按照高压模式工作,电控活塞冷却喷嘴关闭;如果否,继续判断机油温度是否小于第二温度阈值;如果机油温度大于等于第一温度阈值且小于第二温度阈值,控制可变排量机油泵按照高压模式工作,电控活塞冷却喷嘴开启。本发明将可变排量机油泵与电控活塞冷却喷嘴有效的进行结合,根据机油温度进行分段式控制,同时控制可变排量机油泵的高低压模式和电控活塞冷却喷嘴的开闭;实现快速提升油温,降低机油粘度进而减小油耗,同时避免了因活塞温度过低而导致排放增加。本发明还公开了一种装置。
本发明公开了一种用电磁阀控制的气门装置及方法,它解决了现有技术中发动机配气系统缺乏柔性,可控性差,需要额外设置机构来实现发动机特殊功能的问题,具有能实现多个功能,能提高发动机效率,降低有害物质排放的有益效果,其方案如下:一种用电磁阀控制的气门装置,包括能够转动的凸轮轴,凸轮轴设有凸轮;第一驱动件,第一驱动件一端能够与凸轮接触,且第一驱动件的另一端与电磁阀连接;进气门和 或排气门,进气门、排气门各自由第二驱动件控制打开或关闭,且电磁阀与第二驱动件连接,针对进气门和排气门由不同的电磁阀进行控制。
本实用新型公开了一种自散热式应急电池组。现有被动服务器应急电池组因结构紧凑,散热要求高,但缺少匹配的散热结构导致散热不畅而影响使用性能。本实用新型包括电池组本体和多个相变储能单体,电池组本体包括多个电池单体,多个电池单体之间竖直并列设置,每两个相邻的电池单体的外侧壁之间形成有间隙,每个间隙内设置有一个相变储能单体,每个变储能单体包括外囊体和导热片,外囊体内设置有相变导热体,导热片的一端穿过外囊体设置在相变导热体的内部,导热片的另一端设置在外囊体外。
本发明涉及流量控制和分配技术领域,提供一种流量控制阀、发动机热管理系统和汽车,流量控制阀包括壳体,具有进液口和位于底板上的出液口,包括倾斜旋转圆筒和竖直顶杆,倾斜旋转圆筒的顶部可滑动地抵接于壳体的上部,倾斜旋转圆筒下边缘位于相对于倾斜旋转圆筒径向成角度的倾斜面上,壳体内具有顶杆支架,对应每个出液口,顶杆支架上具有支承通孔,竖直顶杆下端朝向对应出液口并设置有沿轴向向上外径逐渐增大的封堵件、上端穿过对应支承通孔并与对应倾斜旋转圆筒的下边缘可滑动地抵接,竖直顶杆在位于顶杆支架和封堵件之间的部分上套设有处于拉伸状态的弹簧,弹簧的上下端分别连接于顶杆支架和封堵件,还包括驱动倾斜旋转圆筒旋转的驱动机构。
本发明一种增程式电动车动力系统及其控制方法,属于电动车动力系统技术领域;所要解决的技术问题为:提供一种增程式电动车动力系统结构及控制方法的改进;解决该技术问题采用的技术方案为:包括:燃料电池模块、动力电池模块、储氢供氢模块和动力系统控制模块;所述燃料电池模块的内部设置有燃料电池堆和燃料电池控制管理模块,所述燃料电池堆通过输气管道分别与燃料电池空气供应单元、储氢供氢模块相连;所述储氢供氢模块内部设置有储氢罐体,所述储氢罐体出气端口通过输气管道依次串接减压阀、三通阀、截止阀后,与燃料电池堆相连,所述三通阀的支路端口还串接氢气循环泵后与燃料电池堆的氢气出口端相连;本发明应用于电动车动力系统。
一种汽车综合热管理系统的控制方法,包括如下步骤:综合热管理控制器获取电机冷却回路中冷却液的温度,以及动力电池的平均温度;若电机冷却回路中冷却液的温度达到电机高温温度,或者动力电池的平均温度达到电池高温温度,则开启制冷模式,对电机冷却回路中和 或电池冷却回路中的冷却液进行冷却,直至电机冷却回路中冷却液的温度低于电机冷却截止限值,并且动力电池的平均温度低于电池冷却截止限值;若动力电池的平均温度低于电池低温温度,则开启加热模式,利用汽车综合热管理系统中产生的热量对电池加热回路中的冷却液进行加热,直至动力电池的平均温度大于电池加热截止限值,则执行关机模式。
本发明公开了一种汽车综合热管理系统,包括电机冷却回路和电池热管理系统,电机冷却系统包括首尾依次连接的第一水泵、多合一控制器、换热器、第一三通管、散热器和第一电子三通阀。电池热管理回路包括电池冷却回路和电池加热回路,其中,电池冷却回路包括首尾依次连接的动力电池、第二三通管、第二水泵、换热板块和第二电子三通阀;电池加热回路包括首尾依次连接的动力电池、第二三通管、第一电子三通阀、第一水泵、多合一控制器、换热器、第一三通管和第二电子三通阀。本发明无需在电池加热回路上额外设置PTC加热器,而是直接利用整车中现有的热量便可对动力电池进行加热升温,具有环保高效的优点,并且能够实现综合控制与管理。
本发明涉及一种具有自加热功能的电化学陶瓷膜制氧系统,为解决现有技术不能现场制纯氧气问题,是多片自加热电化学陶瓷膜片堆叠形成的陶瓷膜组件与热管理系统组合成电化学陶瓷膜产氧模块,配以控制模块等组成具有自加热功能的电化学陶瓷膜制氧系统;该进气风扇输入新鲜的空气,空气经双螺旋式热交换器进行预热,加热至800℃后经气流分布器均匀地吹向堆叠的陶瓷膜组件,经自加热电化学陶瓷膜片的分离,在阳极内表面处得到纯氧、高纯氧和超纯氧;氧气经自加热电化学陶瓷膜片内的微管或槽收集到堆叠的陶瓷膜垛的氧气通道中,输出供用户使用;废气经双螺旋式热交换器降温,排放到机器外部。具有能够现场制取纯氧、高纯氧及超纯氧气的优点。