本发明公开了一种电动汽车热管理系统,其特征在于:包括电机冷却系统、电池热管理系统和PTC电加热系统,所述电机冷却系统与所述电池热管理系统通过第一换向装置连接,所述PTC电加热系统与所述电池热管理系统通过第二换向装置连接,还包括空调系统和循环风道,循环风道依次与蒸发器和暖风芯体串联。通过两个换向电磁阀以及比例三通阀来控制电池热管理系统与电机冷却系统、PTC电加热系统之间的连接关系,系统结构比较简单,便于控制。本发明还提供一种电动汽车热管理系统控制方法,该方法可以根据环境温度以及电池包的工作温度在六个工作模式之间切换,利用各系统的能量进行互补,提高热管理系统的能量利用率。
本发明涉及一种基于发动机壳体热源的机翼前缘防冰结构,包括机翼前缘、发动机、热交换器、液泵、传感器和控制器;所述机翼前缘内部有空腔,所述空腔、液泵和热交换器通过管路串联为流体回路;热交换器固定在发动机壳体上,将发动机壳体的热交换给流体回路中的流体介质;所述传感器用于检测所述流体介质和 或发动机壳体的温度,并将温度信息发送给控制器,所述控制器根据温度信息控制液泵工作。本发明对机翼前缘进行防冰,保证飞机飞行安全;减少飞机热管理系统的负担;不需要从发动机压气机引气,使得发动机实际工作效率得以提高。
本发明涉及一种基于发动机壳体热源的机翼前缘防冰结构,包括机翼前缘、发动机、热交换器、液泵、传感器和控制器;所述机翼前缘内部有空腔,所述空腔、液泵和热交换器通过管路串联为流体回路;热交换器固定在发动机壳体上,将发动机壳体的热交换给流体回路中的流体介质;所述传感器用于检测所述流体介质和 或发动机壳体的温度,并将温度信息发送给控制器,所述控制器根据温度信息控制液泵工作。本发明对机翼前缘进行防冰,保证飞机飞行安全;减少飞机热管理系统的负担;不需要从发动机压气机引气,使得发动机实际工作效率得以提高。
本发明实施例涉及车辆诊断技术领域,具体公开了一种车辆诊断设备的热管理方法、装置和车辆诊断设备,所述方法包括:根据车辆诊断设备当前的放置状态,确定所述车辆诊断设备当前的散热等级;基于所述散热等级管理所述车辆诊断设备中至少一个部件的功耗参数。通过上述技术方案,本发明实施例能够保证车辆诊断设备在各种应用场景下使用的安全可靠性以及用户的舒适度体验。
本实用新型公开了一种具有主动热管理功能的储能模组,包括由多个储能风冷模组组成的储能系统,储能系统的上下两侧面各装有楔形形状的系统出风板和系统进风板;每个储能风冷模组包括从左至右依次相连的楔形形状的电芯风道进风板、电池模组和楔形形状的电芯风道出风板。本实用新型中的电芯风道进风板、电芯风道出风板、系统出风板和系统进风板均为楔形形状,能够对风的流量进行导流,使各个进风口的风量相等;同时,各风板的安装结合面处都设有密封圈,能够防止风的流失。
本实用新型提供了一种锂离子电池模组,包括用于容置并固定电芯模块的模组底壳和用于将所述模组底壳封闭而形成密闭空间的模组上盖,所述模组底壳包括底面及由底面四周向上延伸而形成容置空间的四个面,所述模组底壳沿长度方向的侧面上设有散热翅片,所述模组底壳内设有至少两组电芯模块,所述电芯模块通过长螺杆固定在所述模组底壳内。本实用新型可以作为基础膜组,通过串并联组合成电池包以满足不同车型的需要,缩短膜组开发时间,减少了开发成本,使用范围十分广泛。
电池组,多个单体电池之间设置导热管,导热管内部注入导热工质,还包括相变储热材料,相变储热材料填充在单体电池和导热管间的空隙内。电池使用过程产生的热量,先通过相变储热材料进行传导,再通过导热管内的导热工质将热量导出至电池组外部以便在环境中进行换热。本实用新型还提供电动汽车电池组热管理系统,温度检测器设在单体电池外部,控制器的采集端连接温度检测器,控制器的执行端连接散热装置,实现对单体电池散热的实时控制。本实用新型的电池组内部的相变储热材料起到预先吸收电池热量,预先均匀电池组内温度的作用,在固定单体电池的同时还减轻了局部导热管的传热负担。
电池散热系统,包括单体电池和导热管,单体电池间设置导热管,导热管内部注入导热工质,导热管包括外套管和内套管,外套管与内套管之间形成外通道,内套管内部为内通道,外套管的一端密封,内通道与外通道相连,内通道与外通道中的导热工质的流动方向相反。还可包括相变储热材料,相变储热材料填充在单体电池和导热管间。电池使用过程产生的热量,首先通过相变储热材料进行散热,随后导热管内的循环导热工质吸热后进入冷却系统同时低温的导热工质补充进内套管。本发明还提供电动汽车电池散热管理系统,温度检测器设在单体电池外部,控制器的采集端连接温度检测器,控制器的执行端连接散热装置,实现对单体电池散热的实时控制。