本发明揭示了一种电池包寿命检测充放电系统,包括:充放电设备、切换器、调温装置和控制电脑;控制电脑与切换器、调温装置和充放电设备通讯连接,控制电脑用于控制切换器、调温装置和充放电设备;充放电设备通过切换器与电池包电连接,充放电设备用于通过切换器为电池包充放电;切换器与电池包的BMS通讯连接。通过控制电脑控制切换器实现对电池包充电模式和放电模式的切换,使BMS可以根据软件策略适时启动均衡功能来保证电池包的电压一致性,同时可以使BMS校正SOC和SOH;还可以根据BMS反馈的温度信息适时启动热管理功能通过调温装置对电池包进行温度调整,在对电池包进行寿命检测时,真实有效的验证电池系统在整车上的循环寿命表现,测量结果更准确。
本实用新型公开了一种电池热管理系统,包括箱体、泵体及制冷循环组件,制冷循环组件包括首尾串联的压缩机、冷凝器、板式换热器及压力膨胀阀,板式换热器用于与冷却液换热,泵体与板式换热器连通,泵体用于将冷却液输入电池包,压缩机设于箱体内,压缩机与箱体之间设有第一缓冲件及第二缓冲件,第一缓冲件及第二缓冲件相对倾斜设置。上述电池热管理系统,泵体与制冷循环组件可配合对电池包降温,第一缓冲件与第二缓冲件相对倾斜设置,第一缓冲件与第二缓冲件均可起到缓冲作用,且第一缓冲件与第二缓冲件可对冲,减小压缩机的振动幅度,则上述电池热管理系统可持续提供对电池包的降温,工作的稳定性较好。
本发明涉及一种新能源汽车锂动力电池热管理模拟方法,包括以下步骤:S1、通过HPPC方法测得不同温度、不同SOC参数下的电池单体内阻,得到实验样本;S2、将S1中的实验样本进行归一化处理;S3、通过椭球单元神经网络对S2中的数据以及电池内阻进行创建神经网络预测模型,并得出预测结果;S4、将S3中的预测结果进行间隔加密并测出相应的内阻值;S5、对S4中的数据进行回归拟合;S6、在电池不同的充电倍率下,得出生热回归公式;S7、利用CFD仿真软件的格式编写UDF程序;S8、对电池单体进行CFD仿真实验。采用上述技术方案,本发明提供了一种新能源汽车锂动力电池热管理模拟方法,该模拟方法提高了新能源汽车锂动力电池生热模型的准确性。
本发明公开了一种电池热管理系统,包括箱体、泵体及制冷循环组件,制冷循环组件包括首尾串联的压缩机、冷凝器、板式换热器及压力膨胀阀,板式换热器用于与冷却液换热,泵体与板式换热器连通,泵体用于将冷却液输入电池包,压缩机设于箱体内,压缩机与箱体之间设有第一缓冲件及第二缓冲件,第一缓冲件及第二缓冲件相对倾斜设置。上述电池热管理系统,泵体与制冷循环组件可配合对电池包降温,第一缓冲件与第二缓冲件相对倾斜设置,第一缓冲件与第二缓冲件均可起到缓冲作用,且第一缓冲件与第二缓冲件可对冲,减小压缩机的振动幅度,则上述电池热管理系统可持续提供对电池包的降温,工作的稳定性较好。
本发明提供了一种节温器故障的主动诊断方法及系统,当正常状态下冷却管路出口处的冷却介质的温度T2与当前冷却管路出口处的冷却介质的实时温度T0的差值绝对值大于一第一温差阈值dt1时,则启动主动诊断,否则,进行被动诊断。在主动诊断过程中,当主动诊断过程中的温降斜率大于第一温降斜率阈值KC0或主动诊断进行过程中当前冷却管路出口处的冷却介质的实时温度T0’小于第一温度阈值TC1时,则所述节温器故障,否则,所述节温器无故障。在不增加新硬件的情况下,通过主动诊断,增强节温器全开的情况下冷却效果,提升故障区分度。极大的提升了诊断的可靠性,降低了售后节温器误报和漏报故障的风险。
本实用新型提供的一种动力电池热管理系统,包括电池模组、绝缘导热板以及液冷装置,所述电池模组包括多个沿同一方向排列的电芯单体,并通过连接片实现电连接;所述液冷板装配在所述电池模组上端,所述绝缘导热板设置在所述电池模组与所述液冷板之间,所述绝缘导热板与电池模组的电芯极柱连接片嵌入式连接,与所述冷却装置接触的一面为互盈配合,一方面嵌入式的连接方法增大了绝缘导热板与电芯单体极柱连接片接触面积,更有利于电芯内部热量的向外传导;另一方面绝缘导热板自身材质本身具备良好的导热性能,能更好的实现热量的传导,从而将电池模组在工作中产生的热量更充分的传导到冷却装置中,提高冷却效率。
本实用新型提供了一种基于汽车空调系统的电池热管理系统,包括换热器、制冷循环管路、制热循环管路、电池换热循环管路,所述换热器具有第一介质通道、第二介质通道、第三介质通道;所述制冷循环管路与所述第一介质通道相连,所述制热循环管路与所述第二介质通道相连;所述电池换热循环管路包括第二水泵,所述第二水泵的入口与所述第三介质通道的出口相连,所述第二水泵的出口与电池组的入口相连,所述电池组的出口与所述第三介质通道的入口相连。该电池热管理系统充分利用车载空调系统,在电池温度较高时进行散热,防止产生热失控事故;在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性。
本实用新型提供了一种电动汽车的电池热管理系统,包括换热器、冷却液循环管路、制冷剂循环管路,所述换热器具有第一介质通道、第二介质通道;所述冷却液循环管路包括电池组,所述电池组的出口与水泵的入口相连,所述水泵的出口与所述第一介质通道的入口相连,所述第一介质通道的出口与PTC加热器的入口相连,所述PTC加热器的出口与所述电池组的入口相连;所述PTC加热器内设置有折弯结构的管道。该电池热管理系统,在电池温度较高时进行散热,防止产生热失控事故;在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;环绕在PTC陶瓷加热片的U形管道使得冷却液在加热时受热混合均匀,从而充分地利用了热量。
本实用新型涉及一种新能源汽车热管理的多重保护PTC液体加热总成,其解决了现有新能源汽车PTC液体加热总成控制失效状态下PTC电源未及时关闭而导致总成温度过高的安全问题,其设有控制盒、加热芯体和循环水室,控制盒与加热芯体密封连接,加热芯体置于循环水室内部,控制盒内设控制板,控制板分别连接高压插件和低压插件,还设有温度保护单元,温度保护单元设有温度传感器和热熔断器,温度传感器置于加热芯体进口位,热熔断器设有温度保险丝和过流保险丝,热熔断器串联所述高压插件,安装于加热芯体的腔体内。本实用新型可广泛应用于新能源汽车热管理的多重保护PTC液体加热器总成领域。
本发明公开了一种汽车热管理系统及方法,包括客舱制冷回路、客舱制热回路、电池制冷回路、电池制热回路、电机制冷回路、设置于客舱的第一温度传感器、设置于电机芯体和 或电机驱动器的第二温度传感器、设置于电池内的第三温度传感器,以及根据第一温度传感器、第二温度传感器和第三温度传感器的输出信号控制各回路开启或关闭的控制单元。直接检测电机的主要发热部件电机芯体和 或电机驱动器温度,用于控制单元开启电机制冷回路,使得电机制冷具有快速地响应特性。根据超临界流体换热原理的电池制冷第三子回路和电机制冷第二子回路具有快速降温的效果,提高了电池使用的安全性,延长电机的使用寿命,对环境污染小。
本实用新型设计了一种电池热管理系统,包括第一隔热垫、第二隔热垫、上箱体、下箱体、液冷板、导热硅胶和电池模组。所述第一隔热垫设于所述下箱体和所述液冷板之间,所述第二隔热垫设于所述上箱体和所述电池模组之间,所述电池模组和所述液冷板之间还设有导热硅胶。所述第一隔热垫和第二隔热垫均为聚丙烯塑料发泡材料。本实用新型将聚丙烯塑料发泡材料应用于动力电池热管理系统中,其比重轻、较强的保温性能和缓冲性能能够为液冷板提供更强有力的支撑,避免液冷板在电池系统工作过程中出现弯曲变形的情况,保证电芯、导热硅胶、液冷板之间始终紧紧贴合在一起,从而提高电池热管理系统的可靠性。
本申请涉及一种电池热管理控制方法、装置、计算机设备和存储介质。所述方法包括:获取车用电池温度,以及,获取预存的多个风速控制方案;在所述多个风速控制方案中,确定目标控制方案;所述目标控制方案与所述车用电池温度相匹配;通过所述目标控制方案控制风扇转速;所述风扇转速用于控制风扇转动以调整所述车用电池温度。采用本方法,不仅能够有效提高对电池热管理系统控制的智能程度,还能够根据电池的实际情况准确控温,降低多余能耗。同时,通过车用电池温度来控制风扇转速,再由风扇转速实现对车用电池温度的影响,增强了电池热管理系统的可靠性运行。