本实用新型公开了一种用于电力机车牵引变流器的热管理系统,包括冷却塔、蒸发器和内循环风机,冷却塔与电力机车牵引变流器的变流器柜连成一体,蒸发器和内循环风机安装于变流器柜中;冷却塔安装有压缩机和冷凝器,压缩机通过管路与冷凝器相连并将管路内的制冷剂压缩成高温高压蒸汽经冷凝器将热量散到环境中;制冷剂变成常温高压液体后分成两路:一路进入到变流器柜内功率器件的散热装置内,变成低温低压气液混合态吸收热量;另一路进入到蒸发器中,内循环风机朝向蒸发器以对变流器柜内吹冷风。本实用新型具有提高变流器整体换热效率、工作温度得到降低且稳定、不易受外界环境影响等优点。
本实用新型公开了一种用于动车牵引变流器的热管理系统,包括主冷凝器、压缩机、变流器蒸发器和变流器内循环风机,主冷凝器和压缩机安装于动车顶部的空调柜内,变流器蒸发器和变流器内循环风机安装于动车底部的变流器柜体内;压缩机将制冷剂压缩成高温高压蒸汽经主冷凝器后送入变流器柜体,通过管路接入变流器中各功率模块上;流经各功率模块后的制冷剂通过管路送入变流器蒸发器,经变流器蒸发器后送回至压缩机中;变流器内循环风机朝向变流器蒸发器布置,用来对变流器柜体内腔吹冷风。本实用新型具有结构布局更加紧凑、能够提高动车上变流器整体换热效率、降低外界环境温度影响等优点。
本发明公开了一种用于动车牵引变流器的热管理系统,包括主冷凝器、压缩机、变流器蒸发器和变流器内循环风机,主冷凝器和压缩机安装于动车顶部的空调柜内,变流器蒸发器和变流器内循环风机安装于动车底部的变流器柜体内;压缩机将制冷剂压缩成高温高压蒸汽经主冷凝器后送入变流器柜体,通过管路接入变流器中各功率模块上;流经各功率模块后的制冷剂通过管路送入变流器蒸发器,经变流器蒸发器后送回至压缩机中;变流器内循环风机朝向变流器蒸发器布置,用来对变流器柜体内腔吹冷风。本发明具有结构布局更加紧凑、能够提高动车上变流器整体换热效率、降低外界环境温度影响等优点。
本发明公开了一种用于电力机车牵引变流器的热管理系统,包括冷却塔、蒸发器和内循环风机,冷却塔与电力机车牵引变流器的变流器柜连成一体,蒸发器和内循环风机安装于变流器柜中;冷却塔安装有压缩机和冷凝器,压缩机通过管路与冷凝器相连并将管路内的制冷剂压缩成高温高压蒸汽经冷凝器将热量散到环境中;制冷剂变成常温高压液体后分成两路:一路进入到变流器柜内功率器件的散热装置内,变成低温低压气液混合态吸收热量;另一路进入到蒸发器中,内循环风机朝向蒸发器以对变流器柜内吹冷风。本发明具有提高变流器整体换热效率、工作温度得到降低且稳定、不易受外界环境影响等优点。
本发明公开了一种隧道LED的主动式热管理方法,包括以下步骤:采集LED灯的温度值;根据所采集的温度值,周期性地调整LED灯的供电电流。本发明还公开了一种带有主动式热管理的隧道用LED系统,包括LED灯,还包括:温度传感器,用于采集LED灯的温度值;驱动电路,用于根据所采集的温度值,周期性地对LED灯进行电流调整。本发明解决了隧道中LED灯无法自主调节温度,从而造成大量损坏的问题,从而延长了LED系统的使用寿命。
本发明公开一种电动汽车整车集成热管理系统及工作方法,电动汽车的驱动电机上设置电机冷却管和第一温度传感器,电动汽车的电池组上设置电池组散热器和第二温度传感器,电机冷却管的输入端通过管路依次连接水泵、冷却液箱和第三二位二通电磁阀,第三二位二通电磁阀与电机冷却管的输出端连接,水泵连接水泵电机;水泵的输出端经第一个二位二通电磁阀后连接电池组散热器的输入端,电机冷却管的输出端经第二个二位二通电磁阀后也连接电池组散热器的输入端,电池组散热器的输出端连接冷却液箱;实现对电动汽驱动电机的冷却以及在各种不同天气条件下始终使电池组在适当的温度下工作,提高了驱动电机和电池组的寿命与性能。
本发明公开了一种基于电动汽车热泵空调系统的电池组热管理系统,包括电池组换热器、压缩机、四通阀、第一截止阀、第二截止阀、第三截止阀、第四截止阀、车外换热器、干燥器、膨胀阀、气液分离器,制冷剂循环有多个回路,通过各个回路上的截止阀的开闭来选择不同的制冷剂循环回路。本发明的效果和优势在于,最大限度的利用电动汽车本身的系统资源和大气资源来对电池组进行热管理。有效的解决了,电池组高温需要散热和低温需要加热的需求。同时,实施本专利并不需要对电动汽车原系统布局做大的改变只需要布置少数管路和零部件,成本低,效果好。
本实用新型公开了一种实现动力蓄电池热管理的风道结构,包括冷暖风调和管道、电池风门和电池风门电机,冷暖风调和管道的前、后开口端分别与空调出风口和动力蓄电池进风口相通,冷暖风调和管道的管壁上开设有使其与乘员舱相通的乘员舱出风口;电池风门与冷暖风调和管道可相对转动地连接,并将冷暖风调和管道的内腔分割为与空调出风口相通的空调风腔和与乘员舱出风口相通的乘员舱风腔,电池风门电机带动电池风门转动,以调节两腔之间的比例。本实用新型只需将汽车空调装置的一个出风口用作动力蓄电池热管理,并增加电池风门和电池风门电机即可利用空调装置和乘员舱的环境温度将动力蓄电池的温度控制在动力蓄电池的工作温度范围内。
本发明公开了一种混合动力汽车空调系统及其控制方法,包括整车控制器、自动空调控制器、电池、电池控制器、增程器、制冷单元和制热单元。制热单元包括PTC加热器和加热芯体散热器,电池控制器实时检测电池的电量,并将检测结果发送给整车控制器;整车控制器接收自动空调控制器发送的制热请求或制冷请求,并在收到制热请求后,在电池荷电状态SOC值大于增程模式开启的荷电状态SOC_Z值时,开启PTC加热器;在所述电池荷电状态SOC值小于或等于增程模式开启的荷电状态SOC_Z值时,开启加热芯体散热器。本发明通过增加PTC加热器,改变控制方法,使空调系统能够在不同SOC状态下工作,实现了空调舒适性与节油、省电的平衡。
本发明提出了一种发动机冷却系统,包括冷却水泵、缸体水套和缸盖水套;还包括分流装置。其中,分流装置的入口与冷却水泵的出口连接;分流装置至少包含两个出口,至少一个出口连接缸体水套,至少一个出口连接缸盖水套。本发明能够更加精确地控制冷却发动机缸体和缸盖的冷却液流量,满足发动机缸体和缸盖的不同温度要求,更好地控制发动机热管理系统;同时实施、优化容易,且成本较低。
本实用新型公开了一种基于热管的电动汽车动力电池组温控系统,其特征是设置电池组温控箱体为密闭箱体,内部包含一密闭的电池成组仓,电池成组仓的长度和高度均小于电池组温控箱体,但两者宽度相同;在电池成组仓与电池组温控箱体之间形成有环形换热仓;在电池成组仓中沿长度方向贯穿布置热管,热管穿过相互平行布置的各绝缘散热片,热管的端头处在环形换热仓内;各单体电池布置在绝缘散热片之间,并且单体电池散热面与绝缘散热片相贴合;在环形换热仓中分别设置加热器和蒸发器。本实用新型能解决因流通阻力过大而导致不能对每个单体电池进行有效热管理的问题,同时实现电池箱体的密封设计,安全性高,且动力电池温度调节迅速,温度场分布均匀。
本发明公开了一种动力蓄电池热管理方法及系统,包括:获取动力蓄电池各检测点的温度;在检测到发生任一热管理开启事件时,开启空调装置的热管理模式;之后,获取空调出风口的温度和乘员舱的环境温度;在检测到动力蓄电池进风口的温度与热管理模式的目标温度不一致时:如果动力蓄电池进风口的温度低于所述目标温度,则使空调出风口的电池风门旋转至使动力蓄电池进风口对于乘员舱和空调出风口中的暖风侧的开度较大的位置;反之则使空调出风口的电池风门旋转至使动力蓄电池进风口对于乘员舱和空调出风口中的冷风侧的开度较大的位置。本发明可利用汽车空调装置实现动力蓄电池和乘员舱的温度控制。