本发明公开了一种基于储能模块的冷热点联供智能系统,包括光伏供蓄电及热管理系统、室外换热系统和室内换热系统;光伏供蓄电及热管理系统包括蓄电池、太阳能电池和热管理设备;室外换热系统包括压缩机、四通换向阀和室外换热器,太阳能电池的正负极分别通过第一线路和第二线路连通蓄电池和压缩机,第一线路和第二线路分别通过第一导线和第二导线连通,第一导线和第二导线上分别设置有第一导通阀和第二导通阀,室内换热系统包括室内换热器和相变储能设备。本发明实现了即使在低温条件下,也可保证热量达到人体舒适温度,具有显著的便捷实用性、节能性和持续使用性。
本实用新型公开了一种新能源汽车高压加热器,包括控制模块、空调发热芯体、电池发热芯体、空调水室、电池水室;所述的控制模块分别与空调发热芯体和电池发热芯体相连接,可单独控制空调发热芯体和电池发热芯体的发热功率;所述的空调水室与空调发热芯体通过导热硅胶相粘接;所述的电池水室与电池发热芯体通过导热硅胶相粘接;所述的空调水室和电池水室独立隔开,且均设置有进水管和出水管。本实用新型所涉及的一种高压加热器新能源汽车高压加热器,包含空调水室、电池水室,并且两个水室相互独立运行,每个水室的加热温度可独立调整。可同时满足空调采暖、电池预热对工质的温度需求。
本实用新型公开了一种纯电动汽车整车热管理系统,设有可调节进风格栅,还包括电驱动系统、电池系统和空调系统。所述电驱动系统包括第一水泵、第一三向阀、电驱动散热器。所述电池系统包括电池冷却器、电池、PTC电加热器和第二水泵。所述空调系统包括空调加热芯、止回阀、第二三向阀。本实用新型公开的纯电动汽车整车热管理系统,将电驱动的热量导入到空调系统,在低温工况下辅助空调系统进行采暖,实现了热量循环利用。同时,通过对热管理系统各循环回路的智能控制,从而保证了电驱动、电池等均在合适的温度区间内工作,实现电动汽车完整的冷热系统管理。
本发明涉及新能源汽车热管理系统,更具体的为一种电机控制球阀转动的三通水阀,本发明提供了一种新能源汽车用三通电子水阀,包括壳体、阀芯、执行器、法兰、管口阀座、密封圈、衬套、圆台式球体、流体通道,壳体上设计有三个壳体管口,通过对各部件间的角度设计,在实现上述三个管口间输入、输出的同时进行流量比例分配,管口阀座为分体式结构,壳体上设计有水阀安装支架,水阀安装支架上设计有衬套安装半环,执行器通过控制阀芯旋转,改变流体通道与壳体管口重合面积,实现流量分配,本发明的有益效果在于降低了管道流阻,提高了密封可靠性,降低了阀座的装配难度,且增加阀座稳定性与管口密封性,提高了产品使用寿命和控制精度。
一种增程式电动车的电池热管理装置及电池热管理方法,包括总控制器、电池包、驱动电机和增程器,总控制器分别连接于驱动电机和增程器,电池包连接驱动电机以给驱动电机供电,增程器连接于电池包和驱动电机以分别给电池包充电或给驱动电机供电;总控制器根据增程器最大输出功率Pmax、整车所需功率PN、电池包放电功率PD、电池包温度T和荷电状态SOC以控制增程器的输出功率P和电池包充 放电功率且限制电池包充电 放电功率。本发明通过控制增程器输出功率以及对电池包充电 放电功率的限制,以在优化整车动力的同时,提高电池包的寿命。
本发明公开了一种基于热阻网络模型的电池热失控预测方法,方法把大型电池包内的电池单体简化成热网络节点,将电池组系统内的对流、导热、辐射过程简化成热阻,利用电路求解方法实现电池组传热过程的快速计算。此外,将不同的冷却方式简化成相应的热阻模块嵌入电池组热阻网络,可以评估冷却方式对热失控防护的有效性。热失控预测过程包括:基于电池单体的传热特征参数建立单体热阻网络;计算电池稳态工作发热量并设定相应的热管理方案,通过实验获得热失控过程电池单体发热特征;建立电池组热阻网络;给定热失控发生位置并设定正常电池热失控温度下限;记录预测电池组损毁进度和损毁时间,并评定不同热管理措施的防护效果。
本发明提供了一种发动机热管理系统,涉及车辆发动机技术领域。发动机热管理系统,包括第一循环冷却回路和第二循环冷却回路。第一循环冷却回路包括由管路串接的机械水泵、缸体阀、缸体水套和缸盖水套,其中,在缸体阀前,机械水泵还与缸盖水套通过管路直接相连,第二循环冷却回路包括由管路依次串接在缸盖水套后的节温器和散热器。本发明的发动机热管理系统集成化高,布置合理,分离式冷却、缸盖集成排气歧管可以实现发动机快速升温,暖机阶段加热机油,减小摩擦,满足整车采暖,高温冷却机油、增压器、缸体缸盖燃烧高温区域,极大提升了发动机的性能,降低了发动机油耗,优化了发动机排放。
本实用新型提供了一种汽车热管理系统和纯电动汽车,涉及电动汽车技术领域。纯电动汽车包括上述汽车热管理系统。汽车热管理系统中,汽车热管理系统包括制冷剂子系统、电驱冷却子系统和热交换器;制冷剂子系统和电驱冷却子系统均连接于热交换器;制冷剂子系统用于对乘客舱制冷,或者用于对热交换器吸收热量;电驱冷却子系统用于对汽车电驱设备制冷,或者用于乘客舱加热,或者用于对热交换器释放热量。汽车热管理系统的加热能力和制冷能力较强、能源利用率较高、成本较低。
本实用新型提供了一种汽车热管理系统和纯电动汽车,涉及电动汽车技术领域。纯电动汽车包括上述汽车热管理系统。汽车热管理系统包括电池热管理子系统、电驱冷却子系统和热交换器;电池热管理子系统和电驱冷却子系统均连接于热交换器;电池热管理子系统用于对热交换器吸收热量、并对电池组加热,或者用于对电池组制冷;电驱冷却子系统用于对汽车电驱设备制冷,或者用于乘客舱加热,或者用于对热交换器释放热量。该汽车热管理系统的加热能力和制冷能力较强、能源利用率较高、成本较低。
本实用新型提供了一种汽车热管理系统和纯电动汽车,涉及电动汽车技术领域。纯电动汽车包括上述汽车热管理系统。汽车热管理系统中,制冷剂子系统和电池热管理子系统均连接于热交换器;制冷剂子系统用于对乘客舱制冷,或者用于对热交换器吸收热量;电池热管理子系统用于对电池组制冷,或者用于对热交换器释放热量。汽车热管理系统采用模块化、分离式设计理念,可充分利用空间,简化安装,便于维护,提高可靠性。制冷剂子系统、电池热管理子系统共用一个热交换器,避免单独设置冷却系统,既简单可靠又节省成本,能实现对乘客舱的制冷、对电池组的制冷,功能强大。
本发明公开了一种快速充电系统及其充电方法,快速充电系统包括充电桩系统、车载动力电池系统以及外置热管理系统;充电桩系统上设置有充电接口;充电桩系统连接普通供电网络,以存储来自普通供电网络输入的交流电,并将存储的交流电转化为相对较高输出功率的直流电从充电接口输出;车载动力电池系统包括多个动力电池,动力电池之间设置有供冷却媒质流动的导热管路,导热管路上设置有导热接口;外置热管理系统通过导热接口与车载动力电池系统连接;外置热管理系统中储存有冷却媒质,充电时,外置热管理系统利用导热接口,向导热管路中输入冷却媒质,对动力电池进行冷却。本发明的快速充电系统及其使用方法,低成本、易于实现、且充电质量稳定。
本实用新型公开一种锂离子电池组模组盒、锂离子电池组及锂离子电池包,其中,所述锂离子电池组模组盒包括盒体,所述盒体具有上端开口的容纳腔,所述容纳腔用以容置锂离子电池,所述盒体包括用以围设形成所述容纳腔的多个围板结构,至少一所述围板结构为换热结构,所述换热结构的内部具有换热通道,所述换热通道内流通有换热液,所述换热结构用以通过所述换热液将所述容纳腔空间的热量交换至所述盒体的外侧。减少了热量传递的介质,实现了热量的无缝传递,提高热交换的效率,方便对锂离子电池组进行热管理。