本发明公开了一种调温阀,调温阀包括充注状态和第一工作状态,通过在调温阀的端盖中设置热熔物,促使热动元件不与第一阀座相抵接,第一阀口处于打开状态,此时调温阀装入热管理系统中后,由于第一阀口处于打开状态,在充注润滑油的过程中,润滑油可以经由第一接口通道、第一阀口、第二接口通道流入热交换装置中,热管理系统的润滑油充注较为简单,并且在充注润滑油时还有对热交换装置及其连接管路进行检漏的功能。
本实用新型公开了一种用于混合动力车辆的热管理控制系统及车辆,涉及车辆技术领域。所述热管理控制系统包括信息输入模块,用于输入整车状态信息;信息处理模块,用于处理所述整车状态信息;和信息输出模块,用于输出控制信息;其中,所述信息处理模块包括空调回路模块、电机冷却模块、电池回路模块、发动机循环模块和风扇控制模块;且所述空调回路模块、所述电机冷却模块、所述电池回路模块、所述发动机循环模块和所述风扇控制模块的输入端均与所述信息输入模块的输出端信号连接。本实用新型还提供了一种车辆,包括上述热管理控制系统。本实用新型能够对整车的热管理实行系统化的管理,同时能够提高整车的热管理效率。
本实用新型公开了一种电池包热管理冷却装置,包括用于放置电池模组的电池箱体和用于流通冷却液的液冷管路,所述电池箱体的底部设有放置液冷管路的空腔结构,液冷管路铺设在空腔结构内,电池模组放置在空腔结构上,空腔结构将液冷管路与电池模组完全隔离开。空腔结构包括电池箱底板和隔板,液冷管路设置在电池箱底板与隔板之间,液冷管路铺设在电池箱底板上,隔板覆盖在液冷管路上将液冷管路与电池模组完全隔离开,解决了由于液冷管路漏液而对放置在电池箱体中的电池模组造成危害的问题。
本实用新型属于车辆控制领域,具体涉及一种车载网络拓扑结构,包括底盘CAN网段、动力CAN网段、信息娱乐CAN网段、车身舒适CAN网段以及T Box CAN网段;底盘CAN网段、动力CAN网段、信息娱乐CAN网段、以及车身舒适CAN网段分别连接于中央网关,并且任意CAN网段间通过中央网关实现通信;T Box网段独立连接于中央网关。本申请的车载网络拓扑结构主要用于电动汽车,其能满足电动汽车信号交互的安全性、便捷性等性能要求。
本发明涉及电池运维技术领域,具体涉及一种新型电池热管理模块及其控制方法。一种新型电池热管理模块,包括控制器、水泵、冷水量调节阀、热水量调节阀、加热器和热交换器,电池包的内置水管的出水口与加热器进水口以及热交换器的进水口连接,加热器出水口通过热水量调节阀与水泵进水口连接,热交换器的出水口通过冷水量调节阀与水泵进水口连接,水泵出水口与电池包的内置水管的进水口连接。一种新型电池热管理模块的控制方法,包括:A)获得并控制进水口温度;B)周期性改变水流方向。本发明的实质性效果是:方便设计以及部署;使温度管理更精准,减小温度波动;使电池包内的电芯温度更加均匀,提高电芯寿命。
本发明公开一种汽车热管理系统的加热器结构,包括水箱、发热膜和绝缘膜,发热膜的两侧分别设有绝缘膜形成发热组件,发热膜的两端形成触极,水箱包括进水口和出水口,进水口和出水口之间设有若干水管,各水管平行布置,发热组件依次缠绕在各水管上,每一水管上的发热组件向进水口和出水口延伸,发热组件通电时用于加热水管。本发明采用发热膜或加热膜进行加热,具有体积小、加热效率高等优点。
一种Al与Ti混杂增强的石墨膜块体复合材料及其制备方法,将预处理的Ti箔和石墨膜交叉层叠放置于石墨模具后进行等离子活化烧结,得到石墨膜-钛层状块体复合材料,然后进行穿孔处理,使穿层方向形成贯穿直孔;随后采用挤压铸造工艺使熔融的铝液填充进石墨膜-钛层状块体复合材料的贯穿直孔中,得到Al与Ti混杂增强的石墨膜块体复合材料。本发明有效提高石墨膜-钛层状块体复合材料的抗弯强度,使其具有优异的力学性能;同时由于金属钛骨架对石墨膜垂直膜平面方向热膨胀系数的有效约束,还能有效降低石墨膜-钛层状块体复合材料穿层方向的热膨胀系数,从而使该复合材料的强度及穿层方向的热膨胀系数满足新型热管理材料的性能需求。
本发明涉及新能源燃料电池发动机技术领域,提供了一种燃料电池发动机氢气循环热管理系统,包括高压电磁阀、比例调节阀、板式换热器、第一氢气缓冲罐、第二氢气缓冲罐、电堆、氢水分离器、回流泵及加热电磁阀,加热电磁阀的出水口还连接有一段可加热的尾排气管,燃料电池发动机冷却液循环系统中的冷却液经过PTC加热组件加热后流入板式换热器、第一氢气缓冲罐、电堆及氢水分离器,再流回到燃料电池发动机冷却液循环系统系统。该热循环系统使氢气进入电堆前处于合适的反应温度,能够有效提高电堆的反应效率,进而实现燃料电池发动机的氢循环热管理系统,改善发动机的低温适应性,提高发动机系统的可靠性和稳定性。
本发明公开了一种带电机余热回收双模冷却动力电池热管理系统,包括电池水冷板、水管、空调管、压缩机、电池热交换器、电子膨胀阀、冷凝器、风扇、电子四通水阀、电子三通比例阀、散热器、电机三合一、小三合一、电机水泵、电池水泵以及三通水阀。本发明水冷板主体整体焊接为大面焊接,有效增加水冷板自身及与电池模组的换热效率,能够保证与电池模组接粗面温差小于1 5℃,保证了电池循环寿命、避免了整车热失控,降低整车制冷功耗延长续航里程。
本发明公开了一种发动机润滑系统中机油热管理控制方法,包括:获取发动机主油道内的机油温度;判断机油温度是否小于第一温度阈值;如果是,控制可变排量机油泵按照高压模式工作,电控活塞冷却喷嘴关闭;如果否,继续判断机油温度是否小于第二温度阈值;如果机油温度大于等于第一温度阈值且小于第二温度阈值,控制可变排量机油泵按照高压模式工作,电控活塞冷却喷嘴开启。本发明将可变排量机油泵与电控活塞冷却喷嘴有效的进行结合,根据机油温度进行分段式控制,同时控制可变排量机油泵的高低压模式和电控活塞冷却喷嘴的开闭;实现快速提升油温,降低机油粘度进而减小油耗,同时避免了因活塞温度过低而导致排放增加。本发明还公开了一种装置。
本发明公开了一种热泵系统、热管理方法及车辆,涉及车辆技术领域。所述热泵系统包括集成有超导液流道和制冷剂流道的集成式换热器;所述制冷剂流道设于车载制冷剂循环回路中,用于制冷或 和制热以调节车辆的乘员舱内的温度;所述超导液流道与电机散热管道连通,所述电机散热管道和所述超导液流道内均填充有超导液,所述超导液能够吸收车载电机工作时产生的热量,并通过相变传热将所述热量传递至所述超导液流道。本发明还提供了相应的热管理方法。同时,本发明还提供了一种车辆,所述车辆上设有上述所述的热泵系统或由上述所述的热管理方法进行热管理。本发明能够提高整车能源利用率,同时降低热泵系统的许用环境温度,简化热泵系统的架构。
本实用新型提供一种热管理装置,包括冷却管,所述热管理装置还包括设置在冷却管上的若干连接件以及与所述连接件固定连接的支撑装置,所述支撑装置包括设置在所述连接件上的支撑件、套设在所述支撑件上的弹性件以及底座,所述支撑件上还设有挡板,所述弹性件设置在所述挡板和所述底座之间,所述底座安装在电池包箱体上,当所述挡板与所述底座对所述弹性件挤压时,所述弹性件发生弹性形变。本实用新型提出的热管理装置,通过设置的连接件、支撑件以及底座,将弹性件与冷却管隔开,避免弹性件与冷却管的直接接触,进而有效防止弹性件发生低温脆化。本实用新型还提供一种采用上述热管理装置的汽车。