本发明属于电池管理系统领域,具体涉及到前端BMS硬件、边缘计算节点、电池数据分析平台为依托的三层架构组成的新型电池管理系统体系。包括电池容量和SOC不一致判定,电池主动均衡指令计算下发;具备电池寿命预测、健康状态评估功能,包括电池模型更新。本发明所述的基于云端的BMS体系,简化前端硬件部分,加强边缘、云的数据分析功能,并将电池管理、状态评估及运维功能上移至上层平台,依靠上层平台的大数据计算分析能力,提高BMS的安全性,包括风险预警和保护,提高BMS的经济性,包括减低硬件成本,提升电池系统利用效率。
本发明公开了一种缓冲热冲击的电池热管理系统,气液相变材料与液冷微通道在电池间隙中穿插布置,在电池发热突增时,气液相变材料吸热相变,对系统散热进行缓冲,与液冷微通道一起将电池热量带走,在电池散热温度较低时,气液相变材料起导热和显热的作用,最终通过液冷微通道散热;本发明能够解决紧密空间电池组的温度管理问题,并能有效降低电池组热失控、失火的风险。
本发明涉及汽车领域,具体涉及一种电动车辆换电充电控制方法及装置。包括更换动力电池后,补充动力电池冷却液;充电;充电完成后抽干冷却液,备用。本发明能有效防止电动车辆在更换动力电池过程中以及更换下后充电过程前后,动力电池冷却液外漏,避免动力电池在充电过程中冷却液不足导致动力电池过热损坏或温度过低充电效率低的热管理问题,保证动力电池的使用寿命和车辆安全。
本申请提供了一种基于超结构模型的航空机载换热网络优化方法,所述方法包括:确定机载换热网络中冷热流体的进出口参数及冷热流体的股数;根据所述冷热流体的进出口参数及冷热流体的股数建立换热网络超结构模型,从而建立每个换热节点的热平衡关系;构建最优换热面积下的优化目标函数,通过优化目标函数计算冷热流体的换热量,通过优化算法迭代计算所述优化目标函数得到全机换热网络结构。本申请的方法从全机的角度对热量的交换过程进行整体优化,是一种热管理系统中热网络的正向设计方法,能够最大限度的利用机载现有热沉,同时优化换热节点的重量和换热功率裕度,为系统的轻质化设计提供重要的指导方法。
本申请实施例提供一种用于电池的箱体、电池、用电装置、制备电池的方法和设备,其中,箱体包括:承载板,用于承载电池;单向重力阀,设置于承载板;单向重力阀被配置为在箱体内的液体的重力小于阈值时关闭;且在箱体内的液体的重力达到阈值时开启,以使液体经由单向重力阀排出。通过设置单向重力阀,在箱体内的液体过多,例如液体的重力达到阈值时,可以及时将箱体内的液体排出,从而可以避免过多的液体长期滞留在箱体内,进而可以减少安全隐患,提高电池的寿命。
本发明提供了一种动力电池工作异常的检测方法及系统,包括:平均发热量获取步骤:计算动力电池在第一时刻到第二时刻内的平均发热量;发热量限值获取步骤:获取动力电池在生命周期内的发热量限值;决策步骤:判断所述发热量限值是否大于等于所述平均发热量,若判断结果为是,则动力电池工作正常,若判断结果为否,则动力电池工作异常。本发明有效的解决了当前技术中易出现的电池已处于异常状态,但由于电池热管理性能较好,电池未达到温度异常阈值从而未报警的检测死角问题。
本发明属于动力电池组领域,特别是一种用于动力电池组热管理系统,包括与电池组连接的换热器、冷凝器、储液器形成的冷却回路;以及换热器、气泡泵、气液分离器形成的加热回路,同时气液分离器的液体出口与储液器管路连接,储液器与气泡泵管路连接为气泡泵补充液态冷却工质。本发明的技术效果在于:高效换热,利用了工质相变换热大大提升了换热系数,相比传统的风冷换热系数要提高二个数量级,比液体冷却要提高一个数量级;散热冷却双循环,散热循环省去了传统液体冷系统的动力部件,并将散热与加热结合到一个系统中结构更简单运行更可靠。
本公开公开了一种汽车用空调集成燃料电池热管理系统及控制方法、装置,该系统包括:控制单元,所述控制单元分别与空调制冷系统、燃料电池冷却液循环系统和燃料电池组连接;所述空调制冷系统与燃料电池冷却液循环系统通过板式换热装置连接,进行热量交换;所述燃料电池冷却液循环系统与燃料电池组连接,所述控制单元采集燃料电池组数据控制所述燃料电池冷却液循环系统对燃料电池组进行低温冷启动预热,以及控制空调制冷系统与燃料电池冷却液循环系统冷却燃料电池组。
本实用新型涉及一种用于汽车LED照明灯的热管理装置,包括离子风发生装置、电加热装置和集热翅管;所述集热翅管固定在汽车引擎盖内且与所述汽车LED照明灯接触,并且所述集热翅管通过导热管连接汽车发动机以收集并储存发动机运行时产生的热量;所述导热管中部可设有将其断开导通的控制机构。本实用新型的有益效果是:在低温环境下,利用汽车发动机运行时产生的热量来使汽车LED照明灯升温以保证汽车LED照明灯的正常工作。
本发明涉及一种新能源汽车电机预热系统、车辆热管理系统及新能源汽车,其中,新能源汽车电机预热系统包括:电机预热管路,用于为电机进行预热,电机预热管路用于与车辆热管理系统中的PTC水加热器连接形成电机预热回路;其中,PTC水加热器用于加热电机预热管路中的热传导工质为电机预热。本发明通过在现有的车辆热管理系统的基础上增设电机预热管路,仅通过改变管路设计利用车辆热管理系统的PTC水加热器为电机进行预热,无需专门增设加热装置进行预热,不会增加车辆热管理系统的体积,能够实现在环境温度较低时为电机进行快速预热,使电机能够稳定在工作效率较高的温度下,保证电机的工作效率。
本发明提供了一种电池包热管理系统及其控制方法,上述电池包热管理系统设于电动汽车,用于对上述电动汽车的电池包进行热管理,上述热管理系统的控制方法包括:收集上述电动汽车的电池包的电芯温度;收集上述电池包的工作工况,上述工作工况包括快速充电模式;以及基于上述电芯温度与上述工作工况控制上述电池包热管理系统的加热模块为上述电池包加热,或控制上述电池包热管理系统的散热模块为上述电池包散热。根据本发明所提供的电池包热管理系统及其控制方法,能够使电池包适应于极低温和极高温环境,并且能够有效保持电池包工作在最佳工作温度区间,有利于提高电池包使用效率并且延长电池包使用寿命。
本实用新型提供了一种热管理系统,包括压缩机、室内冷凝器、第一三通管道、集成阀、室外换热器、储液罐、膨胀阀、蒸发器、第二三通管道、气液分离器、第三三通管道;所述集成阀上设置有流体通道,流体通道包括第一流体通道、第二流体通道、第三流体通道、第四流体通道、第五流体通道、第六流体通道以及第七流体通道。本实用新型结构简单紧凑,易于空间布置且占用面积小,适用于汽车热管理,热管理系统的不同模式可以满足汽车的采暖和空调降温需求,提高了乘坐舒适性。本实用新型中的集成阀将多个阀体集成后通过一个执行机构控制,节省成本的同时简化了控制逻辑。