本发明公开了一种空间光学遥感器有效载荷光机电热一体化分析与优化方法,包括:步骤1、进行温度场计算,分别考虑遥感器载荷的温度场描述;步骤2、计算遥感器在不同温度场作用下所引起的光程差变化;步骤3、计算遥感器在热状态下光学系统的性能参数并与任务要求的光学性能指标相比较;步骤4、计算在热状态下电子学系统的信噪比并与任务要求的电性能指标相比较;步骤5、比较结果若满足指标要求,则加大输入给仪器的温度载荷,重复上述计算过程,直至得到不满足指标的临界温度为止,以此作为热控指标;步骤6、通过环境模拟试验评估、验证设计结果;步骤7、综合以上结果,对热控系统加以改进和优化。本发明提高热设计指标准确性,提升设计质量。
本发明公开了低温续驶里程衰减整车热管理设计目标分解模型与分析方法,步骤如下:获取或计算建模所需的参数,车型的滑行阻力曲线,车身质量,轮胎尺寸,能量回收策略,电机效率;计算车型的整车动力性经济性参数;获取电池包库伦效率,电芯电压温度衰减系数,电芯电量温度衰减系数,电芯的热功率,电池包预设质量,前舱风扇功耗,空调鼓风机功耗,电器组件功耗车型开发的长宽高预设值;建立整车设计目标向热管理系统的设计目标分解模型;建立整车功耗分解到热管理系统功耗的分解模型;根据获取参数,按照能耗为主线,进行空调热管理系统的性能目标分解计算;计算得到的整车热管理系统设计目标通过功耗校核验证分解方案的可行性。
本申请提供了一种热管理方法及相关装置,以燃料电池电堆温度作为第一控制目标,通过获取燃料电池电堆的信号参数以及热管理系统的温度参数,计算出电堆散热需求转速;基于该电堆散热需求转速调整水泵转速,使电堆温度控制在合理范围内。另外,通过获取热管理系统的压力参数,计算转速补偿值;基于该转速补偿值,修正水泵的转速,从而实现电堆压力控制在合理范围内的同时,电堆温度有较好的控制精度,兼顾电堆的发电效率和使用寿命。
本申请提供一种预估充电时间的方法,装置及存储介质。该方法包括在一个计算周期中,获取待充电设备的当前温度,以及待充电设备的当前荷电状态(SOC),根据所述当前温度和所述当前荷电状态,得到所述待充电设备的需求电流;根据充电设备电流,所述待充电设备的需求电流,热管理系统的需求电流,确定所述待充电设备的充电电流;根据所述待充电设备的剩余荷电状态和所述充电电流,得到充电时间,所述剩余荷电状态是根据所述当前荷电状态得到的。该方法可用于电动汽车热管理系统或离线热管理策略优化模型中。该方法对充电过程中热管理系统的能耗进行预估,从而解决传统预估充电时间的方法中未考虑热管理系统能耗的问题,以使预估的充电时间更加精准。
本发明公开了一种电动汽车热管理系统、控制方法和电动汽车,一种电动汽车热管理系统,其包括电机冷却回路,电池管理回路和空调回路,所述电池管理回路包括PTC加热回路和电池包回路,所述PTC加热回路与所述空调回路连接,所述PTC加热回路和所述电池包回路通过第二二通四位换向阀连接,所述电池包回路,所述电池包回路与所述电机冷却回路之间通过第一二通四位换向阀连接,所述电池包回路与所述空调回路通过板式换热器连接。本发明不仅结构简单、而且可以通过控制换向阀使电池包冷却液通过散热器散热,保证了电池的安全性。
一种基于相变材料的电动车电池热管理系统属于电动车领域;本实用新型解决电池的热管理系统会消耗大量的电能会降低电动车的行驶里程的问题;包括电池子系统和PCM子系统;电池子系统包括电池和电池热交换器;电池与电池热交换器通过管道连通;PCM子系统包括第一外部热交换器的输出端通过管道与水泵连通,水泵与PCM存储器通过管道连通,PCM存储器的输出端分别与PTC加热器和第一内部热交换器通过管道连通,第一内部热交换器的输出端分别与PTC加热器和蓄池液连通,蓄池液分别通过管道连通在第一外部热交换器的输入端及第一外部热交换器的输出端与水泵之间;降低了电动车电池热管理的能耗,增加了电动车的行驶里程。
本实用新型公开了一种汽车综合热管理系统,包括电机冷却回路和电池热管理系统,电机冷却系统包括首尾依次连接的第一水泵、多合一控制器、换热器、第一三通管、散热器和第一电子三通阀。电池热管理回路包括电池冷却回路和电池加热回路,其中,电池冷却回路包括首尾依次连接的动力电池、第二三通管、第二水泵、换热板块和第二电子三通阀;电池加热回路包括首尾依次连接的动力电池、第二三通管、第一电子三通阀、第一水泵、多合一控制器、换热器、第一三通管和第二电子三通阀。本实用新型无需在电池加热回路上额外设置PTC加热器,而是直接利用整车中现有的热量便可对动力电池进行加热升温,具有环保高效的优点,并且能够实现综合控制与管理。
本发明公开了一种水温的控制方法、装置、整车热管理系统和存储介质。该水温的控制方法,包括:监测柴油发动机的水温,并判断所述水温是否高于设定温度阈值;若是,则获取目标温度及预先建立的所述柴油发动机的水温的状态空间方程;根据所述目标温度及状态空间方程确定所述水温的控制变量,其中,所述控制变量包括风扇转速、电控水泵转速和节温器开度;根据所述控制变量控制所述柴油发动机的水温。本发明实施例的技术方案,通过实时监测水温,建立水温的状态空间方程,确定水温与各个控制变量的对应关系,根据该对应关系确定达到目标温度的控制变量的值,实现了在线优化各个控制变量的值,提高了水温控制的精度,减少了系统的能耗。
本发明属于动力电池管理技术领域,公开了一种基于柔性热管的动力电池管理系统,包括:温度检测模块、电量检测模块、电压检测模块、电流检测模块、绝缘强度检测模块、中央控制模块、温度管理模块、电压管理模块、充放电管理模块、能耗计算模块、续航计算模块、性能测试模块、安全监控模块、故障报警模块、故障保护模块、显示模块。本发明通过故障保护模块使得在电池管理主控器和电池管理从控制器发生通信故障的情况下,尤其是在充电过程中,完成故障模式向安全模式的转化;同时,通过性能测试模块可以预测动力电池系统的温度适应性,测试动力电池系统的热管理性能,为评估动力电池系统环境适应性提供了可靠的评估依据。
本发明公开了一种适用于地外空间的生物培养的环境形成装置,包括壳体和设置于所述壳体上部空间的生物舱,且壳体的上部还设有用于从外界导入生物生长用光的光管理系统;壳体上还设有用于至少保持上部空间温度的热管理系统和用于为生物生长提供生长用水的供水系统;本发明在壳体的适当部位配备有生物舱等结构,在地球外星体上能够创造出并模拟相对适应生物生长或者培育的环境,为地外空间生态培养提供条件,能够形成地外空间的生态圈,保证地外空间生物实验过程的顺利进行;本发明的装置结合相应的培养基底以及监控系统,可初步实现人类在地球以外星体上生物试验,对人类今后建立月球的其他星体基地提供研究基础和经验,具有重大理论和实践意义。
本发明提供一种储能集装箱温度控制系统及温度控制方法,所述温度控制系统,包括箱体内部的进风部分、出风部分、控制部分、风道部分,由外部进风模块与空调的出风口共同作为进风部分,所述外部进风模块由在进风通道上安装的第一电动百叶与若干进风风扇构成,由外部出风模块与空调的进风口共同作为出风部分,所述外部进风模块由在出风通道上安装的第二电动百叶与若干出风风扇构成,每台空调的出风口与风道部分的进风口连通,每台空调的进风口与风道部分的出风口连通。本发明在保证电池运行存储温度的同时,大大降低了系统功耗,有效提高了储能系统工作效率,提升了产品的收益;同时降低空调使用率,延长了空调寿命。
本发明公开了一种用于电动客车的电池管理系统,包括电池组和微控制器,所述电池组连接有数据采集,所述数据采集通过CAN连接到微控制器,所述电池组连接有电池组开关,所述电池组开关连接有电源开关,所述电源开关连接到微控制器,所述电池组连接有均衡电路,所述均衡电路通过串口连接到微控制器,所述串口连接有人机接口和通信接口,所述微控制器包括状态计算能量管理,本发明电池管理系统设置数据采集模块,分别对电池组进行电压、电流和温度的采集检测,对电池进行全方位的安全管理,同时采用绝缘检测系统、烟雾报警系统进行实时的管理和监测,保障了电池的安全使用。