本发明涉及动力装置领域,提供一种发动机热管理方法、控制阀及发动机缸体,所述发动机热管理方法在发动机的高温区域和低温区域分别设置高温冷却管路和低温冷却管路,并在联通所述高温冷却管路、所述低温冷却管路、所述缸盖水套以及所述暖风机之间的管路上设置控制阀,其中,所述控制阀具有导通状态不同的第一工况、第二工况和第三工况,控制阀能够在不同工况之间切换以调整所述高温冷却管路和所述低温冷却管路的冷却能力。本发明所述的发动机热管理方法能够根据需要分别调整高温冷却管路和低温冷却管路的冷却能力,避免冷却管路的冷却能力分布不合理所导致的发动机爆震倾向高和摩擦力大等问题。
本实用新型提供了一种聚氨酯改性的动力电池软包铝塑复合膜,依次包括聚氨酯涂料层、尼龙层、铝箔层及PP层,所述聚氨酯涂料层与所述尼龙层之间可还包括PET层。所述聚氨酯涂料层由聚醚型聚氨酯与聚脲型聚氨酯混合构成,所述聚氨酯涂料层的厚度大于等于20μm。本实用新型有效地提高了软包铝塑复合膜外层材料的耐水解性能,使电池包在液冷式热管理系统中长期稳定地工作。
本发明公开一种动力锂电池热管理系统,包括由多个锂电池单体构成的锂电池组、散热组件、风扇和固定件;所述散热组件包括预热片和散热单体,多个所述散热单体依次并列组合成散热块,在所述散热块的底部和一侧设置预热片,在一端的散热单体上设置锂电池单体,所述固定件固定所述锂电池单体和散热组件;所述散热单体包括集热板、热管和翅片组,所述热管镶嵌在集热板上且热管的顶端伸出集热板,所述翅片组套于所述热管的顶端;所述风扇设置在相邻翅片组之间。本发明能够有效提高电池单体的温度一致性,能够有效提高散热性能和安全可靠性,能够降低散热器损耗,并且能够提高经济指标低、体积质量指标低和环保指标。
本实用新型涉及一种纯电动客车动力电池舱热管理系统,包括控制器、若干个电池舱体,其特征在于,每个电池舱体均包括调温换气装置、舱温传感器、电池模组和电池模组温度采集装置,所述控制器连接所述舱温传感器和所述调温换气装置,BMS电池管理单元连接所述电池模组和所述电池模组温度采集装置,所述控制器连接车辆显示装置和BMS电池管理单元,以电池模组是否工作在最佳温度25℃为执行不同模式判断维度,通过降低高温舱体温度和升高低温舱体对舱体的温度进行调节。
本发明提供了一种热管理可用功率的计算方法、热管理控制器、热管理系统,所述热管理系统包括所述热管理控制器,所述热管理控制器使用所述计算方法来计算极限工况下的热管理可用功率,该计算方法在计算热管理可用功率的同时,综合考虑了驱动可用功率的计算,而且,热管理可用功率采用一阶低通滤波算法,滤波参数的大小取决于驱动需求功率变化率的大小;驱动可用功率限制系数采用PI算法,P参数和I参数随着驱动可用功率与驱动实际功率差值的变化而变化。应用本发明提供的计算方法,极限工况下,能够在满足整车安全需求的基础上,最大程度地保证驾驶性,并且避免动力电池过放。
本实用新型涉及一种锂电池包智能热管理装置,与由多个单体电池组成的锂电池包模块连接,包括中央控制器、温度检测模块、热管理模块和显示与设定模块,所述中央控制器、温度检测模块、热管理模块分别与锂电池包模块连接,所述显示与设定模块与中央控制器连接,所述热管理模块包括加热单元和冷却单元,所述加热单元包括加热驱动电路和分别与加热驱动电路连接的多个加热板,所述多个加热板分布设置于锂电池包模块底部和相邻单体电池之间,所述加热驱动电路与中央控制器连接。与现有技术相比,本实用新型具有提高电池的性能、延长电池使用寿命等优点。
本实用新型公开了一种基于相变热管理的光伏光热集热器。本实用新型包括在常规水冷型光伏光电集热器的基础上引入相变材料,通过合理设计结构,增加相变层以协助液体流质型换热组件提高换热量,进而更为有效地降低光伏背板的温度,提高太阳能电池的发电效率,从而克服现有光伏光热集热器换热能力不足或增加的辅助换热装置存在缺陷;并且本实用新型集热器的三种工作模式能够满足实际应用中不同使用阶段、不同使用需求的换热负荷要求,进而提高太阳能的综合利用效率;此外,在低温下相变材料能够将储存的热量释放为集热器提供低温保护。
本实用新型提供了一种用于增程式混合动力车辆的发电机的冷却系统,属于车辆技术领域。所述用于增程式混合动力车辆的发电机的冷却系统包括具有冷却泵的冷却回路,所述冷却回路经过发电机及发电机控制器,以冷却所述发电机和所述发电机控制器;和集成在所述发电机控制器中的冷却泵控制器,用于以变频方式控制所述冷却泵工作。本实用新型通过将冷却泵控制器集成于发电机控制器处,就能够及时采集发电机系统中的相关信息,因而可以提高冷却控制的响应速度;同时通过变频控制冷却泵工作,就能够根据发电机系统的散热需求实时控制冷却液流量,使得发电机处于最优工作状态,因而有效提高了工作效率。
本实用新型公开了一种管件型电池组,属于电池热管理领域。由多个电池集成块均匀排布集合而成,在管件型电池组上还安装有导热装置;所述电池集成块包括翅片、承重板和绝缘板,所述翅片上开设有按矩形阵列排布的电池芯插孔,单体电池能插入所述电池芯插孔中;翅片的左右两侧分布有承重板,在所述承重板上开设有与所述电池芯插孔相对应的电池芯承重孔;所述导热装置包括折弯形管件以及分布于折弯形管件两端的进、出口流道。所述电池芯插孔呈圆形或方形。其具有工艺简单、稳定性较高、散热效率好的特点。
本发明提供一种热管理结构,包括壳体、附在所述壳体内表面上的散热层、与所述散热层连接的第一导热件、收容有至少一个电池的收容件、与所述收容件连接的第二导热件、及两端分别连接所述第一导热件和所述第二导热件的热管。本发明还提供一种无人机。本发明提供的热管理结构具有结构紧凑、散热效果优异、不消耗能量、及不增加负重的特点,保证无人机工作稳定性和安全性。
本发明涉及一种纯电动汽车动力电池空气热管理系统及其工作方法,包括连接动力电池组箱的空气分配管路、温度传感器及电池管理系统一体机;空气分配管路一端依次连接加热器、空气泵、储气罐、二位三通电磁换向阀E、冷却器、二位三通电磁换向阀F和二位二通电磁换向阀,二位三通电磁换向阀E还通过管路连接二位三通电磁换向阀F;空气分配管路另一端依次连接二位三通电磁换向阀A和二位二通电磁换向阀。本发明动力电池空气热管理系统,具有多种温度调节模式,可针对不同的电池工况进行相应地模式选择,实现对动力电池的合理化、精细化管理,并能根据电池箱内的温度变化实现多种模式的自动切换和控制,具有调节精准、转换快速等优势。
本发明提供了一种电池模组的热管理系统及电动汽车,包括:设置于电池单元两侧的冷板,冷板为内部装有冷却工质的中空结构,开设有中空结构连通的第一孔和第二孔;夹设于冷板与电池单元之间的导热垫片;将第一孔依次连通的多个第一串联管,将第二孔依次连通的多个第二串联管,第一串联管与冷板连接形成第一通道,第二串联管与冷板连接形成第二通道;分别与第一通道、第二通道连通的散热片,冷板与散热片由第一通道与第二通道连通后形成循环回路,冷板内的冷却工质吸热后气化,气态的冷却工质由第一通道进入到散热片中,冷却工质冷凝后液化,液态的冷却工质由第二通道回到冷板中,对电池模组进行降温。本发明采用无源式设计,大大降低了系统功耗。