本发明公开了一种智能学习的纯电动汽车能量管理控制方法,包括:通过加速踏板开度曲线,了解驾驶员意图并获得电机的需求功率,通过数据总线获取动力电池组的温度状态以及经过状态估计得到的荷电状态;根据上述获得的车辆信息,建立基于自适应动态规划的纯电动汽车能量管理模型;通过自适应动态规划方法中双网络的智能学习来对能量管理模型进行求解,得到最优的分配功率给动力电池热管理系统。本发明采用自适应动态规划,能够实时地将纯电动汽车动力电池组功率进行最优的分配,既解决了常规动态规划不能在线实时控制的问题,又克服了门限控制和离线模糊控制的优化程度低问题,在满足汽车正常行驶的基础上,对动力电池组进行有效的温控保护。
本发明公开了一种车辆的热管理系统和车辆。热管理系统包括冷却回路、恒温回路、加热回路和一个膨胀水壶,冷却回路、恒温回路及加热回路均连接膨胀水壶,膨胀水壶用于对冷却回路、恒温回路和加热回路进行液体加注和排气。上述实施方式的车辆的热管理系统中,使用一个膨胀水壶连接冷却回路、恒温回路及加热回路,这样可以降低车车辆的成本,及可以提高车辆生产线上对膨胀水壶加注冷却液的效率及生产节拍,及提高车辆售后维修保养的效率。
本发明提出一种应用新型仿生植物超亲水特性制备的复合型电池热管理装置及其双向热流控制方法。其中仿生热管集与电池进行固-固接触换热,仿生热管集与底部的底置冷 热板直接接触,实现了电池与底置冷 热板的热量传递。同时当电池由冷却工况转为预热工况时,仿生热管集的冷热端随着底置冷 热板的状态改变而进行传热方向的自适应转换。本发明方法克服了以往重力型热管受重力影响冷端的液体不能依靠毛细力上升至热端导致热管内部无法实现热力循环和冷热端自适应调节,极大地提升了电池组高温环境及严苛工况下的高效冷却以及寒冷低温环境下的快速预热能力,保障电动汽车电池组最佳工作温度、功率输出、循环寿命以及热安全性。
本发明公开了一种采用双循环水泵的氢发动机热管理系统,包括软冷启动水路、小循环水路和控制系统,软冷启动水路包括主动式去离子水路和大循环水路;所述控制系统包括ECU控制器。本发明还公开了一种采用双循环水泵的氢发动机热管理系统的控制方法,主要控制小循环水路、大循环水路、软冷启动水路以及主动式去离子水路等不同功能、工况的切换。本发明采用双循环水泵技术,通过先快速加热外部管路冷却,然后通过冷却液混合的加热方式实现对氢发动机的软冷启动,加热效率高、冷启动时间短。同时,本发明设计的双循环水泵可实现电堆工作前冷却液的主动去离子工作模式,避免了现有被动式去离子方式对氢发动机电堆可能的损害。
本发明公开了一种新能源汽车分布式驱动智能化热管理系统,包含一个电机散热单元、一个座舱空调单元及一个电池冷暖控温单元,其中,该电机散热单元包括连接在电机散热回路上的第一散热器、第一液体泵,该座舱空调单元包含座舱空调、压缩机、第二散热器以及热交换器;该电池冷暖控温单元包括,为动力电池提供冷却液的电池散热回路,在低温环境下加热动力电池,以供动力电池启动以及使动力电池在控制温度下运行的电池加热回路;所述热交换器还连接在电机散热回路和 或电池散热回路 电池加热回路中。本发明可优化热能分配,减少热能损失,节约电力,使电池续航更持久。
一种新能源汽车用余热回收式热泵热管理装置,涉及新能源汽车的热管理装置的技术领域。本实用新型包括电动压缩机,电动压缩机的一端与第一三通阀的一端连接,电动压缩机的另一端连接气液分离器,第一三通阀的另外一端与室外换热器的一端连接,室外换热器与气液分离器之间并联设置蒸发器、板式换热器,蒸发器与热力膨胀阀、第三两通阀串联,板式换热器与第一电子膨胀阀串联;室外换热器与第一电子膨胀阀之间的管路上并联设置第二电子膨胀阀、第一两通阀。本实用新型实现了充分利用电机电控的废热,可同时对乘员舱、电机电控、电池进行热管理,有效地降低热泵工作温度下限,节约电池能耗,提高整车续航里程的目的。
本发明公开了一种汽车的热管理电池系统、热管理方法及电池控制装置。所述汽车的热管理电池系统包括:泵、电池箱体、均热板和电池模组。所述电池箱体设置有冷却液流道;所述均热板形成有真空腔体;所述均热板与所述冷却液流道通过所述泵连接,形成内循环散热回路。所述真空腔体还设置有与整车散热系统连通的第一冷却液接口;所述泵设置有与整车散热系统连通的第二冷却液接口,所述真空腔体、冷却液流道、泵以及所述整车散热系统连接,形成整车散热回路。在电池系统冷却过程中,本发明的内循环散热回路,为整车散热系统分担了所要散发的热量,降低了散热的消耗,节约了能源,提高了散热效率。
本实用新型公开了一种基于圆柱电芯的动力电池系统,包括下托盘(100);下托盘(100)的顶部放置有多个电池模组(200);每个电池模组(200)包括前后间隔分布的两个支架(5);每个支架(5)中从上到下开有多排圆柱孔,每排圆柱孔包含的每个圆柱孔中均放置有一个纵向分布的圆柱型的电芯(1);任意相邻的两排圆柱孔之间,设置有一个蛇形管(4);每个支架(5)的左右两端分别具有垂直分布的、中空的端管(3);每个蛇形管(4)的左右两端分别与一个端管(3)相连接。本实用新型能够可靠、有效地对于圆柱电池系统进行可靠的热管理,及时对电池电芯进行冷却和加热处理,控制电池电芯之间的温度差,保证电池系统的均温性。
本发明公开了一种基于相变储能和热电效应的动力电池自动控制热管理系统,包括位于封装外壳内的电池组模块、重力热管管组、以及温度自动控制模块,其中,电池组模块包括单节电池、复合相变材料空心圆柱筒、铝基壳;重力热管管组包括多个重力热管;温度自动控制模块包括半导体热电片均热板子模块、以及分布于各个电池子模块中的测温热电偶,半导体热电片均热板模块包括半导体热电片、均热板、翅片,测温热电偶则用于根据测得的温度调整半导体热电片的正接与反接。本发明通过对其关键模块组件的结构及其设置方式、内部构造、以及各个模块组件之间的相互配合的工作方式等进行改进,与现有技术相比能够有效解决动力电池热管理控制的问题。
本实用新型涉及汽车热管理技术领域,尤其涉及一种并联式车用冷却系统。包括发动机、高温散热器、低温散热器、变速箱冷却器以及变速箱或电器元件,所述变速箱冷却器设置有循环冷却水管,所述循环冷却水管设置在变速箱或电器元件内;所述发动机内设置有发动机循环散热水道,所述发动机循环散热水道两侧分别通过设置有支管,两支管之间并联有高温散热器和低温散热器;所述低温散热器与发动机循环散热水道连通处的支管上设置有一进两出式电控水阀,所述一进两出式电控水阀与变速箱冷却器连通,所述变速箱冷却器与发动机循环散热水道连通。高低温水路之间设计电控水阀,结合节温器将发动机和变速箱或电器元件温度实现最优分配。
本实用新型公开了一种具有热管理功能的单体电池,涉及电池技术领域,该单体电池用于封装电芯的电池外壳基于泡沫铝基体和相变材料制成,相变材料填充在泡沫铝基体中并可以吸收电芯因自身化学反应而发出的热量,当电芯发热异常时,相变材料会迅速吸收电芯的热量变为液态继而变为气态然后冲破电池外壳上预置的疲劳缺口部溢出释放,由于电芯的能量都被相变材料吸收,因此其没有能量继续升温,也就从根本上避免了单体电池热失控着火,保障单体电池的使用安全。
本实用新型公开了一种集成电机冷却和空调暖风的热管理系统,包括控制器、电机和电机控制器、散热器、风扇、水泵、PTC加热器、空调HVAC、第一三通电磁阀、第二三通电磁阀、水温传感器、膨胀箱等。本实用新型通过空调暖风利用电机余热并串联液侧PTC加热的集成方案,行车时主要利用电机余热、辅以小功率液侧PTC加热满足空调暖风需求,驻车或冷启动时利用大功率液侧PTC加热满足空调暖风或除霜除雾需求,理论上可节约电暖风系统40%的电量,对提高汽车续航里程有着重要的意义。