本发明公开了一种基于复合仿生结构的圆柱锂离子电池热管理系统,包括电池模组,所述电池模组包括圆柱电池、冷却板和空心导热柱,所述冷却板表面根据蜂窝结构加工圆形通孔,所述圆形通孔横截面与圆柱电池的横截面相同,冷却板通过圆形通孔套在圆柱电池上,所述冷却板内部根据类蜘蛛网形状和蜂窝结构加工仿生通道,所述空心导热柱内部填充相变材料。本发明将液冷和相变蓄热结合,当电池局部温度大于其融化温度时,发生相变吸热,自动调节电池模组整体温度分布;冷却效果良好,温度均匀分布,模块化的设计使其更加适合应用在大型锂离子电池包中。
本发明公开了一种含有仿生表面微结构散热件的空冷圆柱动力电池包,属于动力电池热管理技术领域。该电池包主要包括风扇,外壳,绝缘固定架,仿生表面微结构散热件,圆柱动力电池。其中,仿生表面微结构散热件的曲面外侧与电池表面接触,曲面内侧设有仿生表面微结构。圆柱动力电池轴向布置,当风扇驱动冷却气流进入电池包后,仿生表面微结构散热件可提高冷却气流与电池之间的换热效率。绝缘固定架安装在每排电池之间,起支撑和绝缘作用。本发明在传统轴向风冷的基础上,增加仿生表面微结构散热件,不改变电池包的尺寸和结构,具有安装方便、结构简单、散热效果强化等优点。
本发明的目的在于提供一种动力电池液冷动态热管理系统,包括电池模组、液冷板、外循环泵、储液箱、多功能传感器、内循环泵、加热器、压缩机、冷凝器、蒸发器、板式换热器、充放电仪,其组成了电池液冷单元、压缩机组制冷单元、液冷内循环单元、液冷外循环单元、环境模拟单元、数据采集单元和电池充放电单元等。本发明多支路设计可以保证系统根据电池产热功率选择合适的热管理策略进行工作,实现对整个动力电池液冷热管理系统的动态监测和智能控制,可以大大降低系统能耗。
本发明的目的在于提供一种基于极耳风冷方式的动力电池热管理系统,包括电池模组、极耳风冷管路、外循环风机、压缩机、冷凝器、膨胀阀、蒸发器、板式换热器、内循环风机和加热器,其构成电池极耳散热单元、压缩机组主冷风单元、板式换热器副冷风单元、风冷内循环单元和风冷外循环单元,风冷外循环单元设置两个独立的风冷通道。本发明为基于极耳风冷方式的动力电池热管理系统,对电池极耳通风散、预热,可减小换热热阻,提高热管理效率,排除系统内有害气体,多支路设计可以降低系统能耗。
本发明涉及一种适于高超声速飞行器的综合热管理装置,包含温度控制活门(1),蒸发器(2),风扇(3),座舱(4),压缩机(5),冷凝器(6),节流阀(7),关断活门(8),第二关断活门(9),空气碳氢换热器(10),流量调节活门(11),过滤器(12),第三关断活门(13),第四关断活门(14),第二风扇(15),电子设备(16),泵(17)等,整个系统以存储在碳氢燃料箱(21)中的碳氢燃料为纽带,将各个分系统连接起来。整个系统以碳氢燃料为纽带,将各个分系统连接起来,以实现高超声速飞行器的热管理。与现有技术相比,本发明所具有的优点和积极效果,例如性能的提高、成本的降低等。
本发明涉及一种适于瞬时高热流的热管理装置,包含流量控制活门(1),过滤器(2),空气液氢换热器(3),关断活门(4),第二关断活门(5),风扇(6),座舱(7),泵(8),储液箱(9),电子设备(10),液氢燃料箱(13)中的燃料通过泵(14)做功,流入空气液氢换热器(3)并吸收热量后,进入发动机(16)。本发明利用冲压空气实现座舱空气调节功能,系统结构简单;利用单相液体回路系统有效带走电子设备、第二动力系统和液压系统的集中热载荷;利用储液箱浸没在液氢燃料箱内充当“热缓冲器”,有效冷却瞬时高热流热载荷。
本发明涉及一种适于长航时大热流的热管理装置,包含压气机(1),空液热交换器(2),涡轮(3),水分离器(4),座舱(5),电机(6),电子设备(7),蒸发器(8),温度控制活门(9),空气在压气机(1)内受到压缩后进入空液热交换器(2),将热量传递给液体循环冷却回路,再进入涡轮(3)降温,经水分离器(4)进入座舱(5),吸收热量后再进入压气机(1),完成一个循环:其中压气机(1)动力来自电机(6)的输入功率以及涡轮(3)的膨胀做功。本发明以碳氢燃料作为热沉,系统冷却能力大;利用空气循环制冷系统对座舱空气进行调节,可靠性高;能量利用率较高,结构紧凑。