本发明公开了一种混合动力汽车燃料电池热管理系统,其特征在于:包括燃料电池水回路、PTC加热水回路、空调制冷系统和乘员舱进风通道,所述燃料电池水回路和PTC加热水回路通过中间换热器换热,所述乘员舱进风通道分别与PTC加热水回路和空调制冷系统换热。本发明还提供一种混合动力汽车燃料电池热管理系统的控制方法,包括燃料电池冷启动模式和燃料电池余热回收模式。本发明当燃料电池冷启动且环境温度较低时,PTC加热水回路可以同时给燃料电池和乘员舱加热,当燃料电池温度过高时,通过PTC加热水回路进行余热回收,并与PTC加热器一道给乘员舱加热,提高了燃料电池的能量利用率,在保证燃料电池冷启动的同时又可以给乘员舱加热。
本实用新型的电池热管理装置,设置有动力电池组、加热组件及固定组件。PTC加热件会通电产生热量,从而完成对导热板的加热,导热板会将热量传递至循环通道内的冷却液及单体电池上,从而完成对各个单体电池的加热,保证了电池在低温环境下的性能;同时,由于各循环通道互相连通,在单个单体电池上的PTC加热件发生故障而无法对电池进行加热时,使得PTC加热件工作正常的单体电池上的较高温度的冷却水能够进入故障单体电池上的循环通道内,从而能够对故障单体电池也进行加热,提高动力电池组的使用寿命及整体放电性能;保温罩的设置,加大了PTC元件对电池的加热效率;固定组件的设置及锁紧孔的开设,使得维修工人能够快速完成PTC元件的更换。
本发明公开了一种热管理结构,该结构通过均热板和散热器有效的散发功能板与电池产生的热量,同时隔热板与均热板、外壳体之间形成的热对流缓冲区有效的降低了外壳体的壳温,使得功能板与电池处于良好工作环境的同时外壳体有一个适宜的壳温,避免影响用户体验。本发明提供的一种热管理结构实现对流换热温度缓冲,有效降低了外壳体的壳温;电池位置放置散热器,通过外壳体上的通道将热量大幅扩散到空气中。本发明还公开了一种应用该种热管理结构的智能眼镜,可有效将智能眼镜佩戴及使用过程中与皮肤接触频率高的位置的温度控制在舒适的范围内,从结构设计上解决了智能眼镜因壳温导致的佩戴舒适度下降的问题,作用效果显著,适于广泛推广。
本实用新型提供了一种热管理系统,包括压缩机、室内冷凝器、第一三通管道、集成阀、室外换热器、储液罐、膨胀阀、蒸发器、第二三通管道、气液分离器、第三三通管道;所述集成阀上设置有流体通道,流体通道包括第一流体通道、第二流体通道、第三流体通道、第四流体通道、第五流体通道、第六流体通道以及第七流体通道。本实用新型结构简单紧凑,易于空间布置且占用面积小,适用于汽车热管理,热管理系统的不同模式可以满足汽车的采暖和空调降温需求,提高了乘坐舒适性。本实用新型中的集成阀将多个阀体集成后通过一个执行机构控制,节省成本的同时简化了控制逻辑。
本发明提供了一种用于发动机的热管理控制方法及系统,属于车辆领域。该热管理控制方法包括以下步骤:判断所述发动机当前的工作状态;采集发动机的进气温度、出水温度和缸体温度;根据所述发动机当前的工作状态、所述进气温度、所述出水温度和所述缸体温度控制车辆的所述发动机缸体、发动机缸盖、散热器与暖风芯体之间的冷却液的流量,从而控制所述发动机的工作温度。本发明还提供了相应的热管理系统。本发明的热管理控制方法及系统能够在保护发动机的同时有效提高发动机的燃油经济性并减少排放。
本发明涉及车辆领域,更具体地涉及车辆用热管理模块及其工作方法。该车辆用热管理模块包括彼此传动联接一个电机与两个单向离合机构,通过电机的输出轴在不同方向的转动经由两个单向离合机构分别带动两组出口通道中的阀门进行动作。这样,根据本发明的车辆用热管理模块由于仅包括一个电机而结构相对简单、成本低;而且根据本发明的车辆用热管理模块与现有技术的车辆用热管理模块相比整体所需的空间小。
本发明公开了一种电动汽车热管理系统及装置,包括用以实现电动汽车动力电池升温和降温的第一回路系统和第二回路系统,第一回路系统包括水泵一、水泵二、水加热器、热交换器和动力电池,所述水泵一的输出端与水加热器输入端相连,该种电动汽车热管理系统及装置,不仅可以在电动汽车行驶的过程中对乘员舱进行加热或冷却、对动力电池实现保温或冷却,同时也能够在电动汽车处于静止状态下,对动力电池的环境温度进行实时监测,并结合低压电池对动力电池进行一定程度的保温,有效的延长了动力电池的使用寿命,并且,也可通过无线信号发射器将低温信号发送至用户手机上,以便用户及时采取保温措施。
本发明提供了一种车辆用热管理模块及其工作方法。该车辆用热管理模块采用在模块主体的内部空间往复运动的柱塞组件实现对介质经由出口管道的流量的控制,并且该柱塞能够在不同的部位处与模块主体实现静态密封。这样,该车辆用热管理模块所实现的静态密封相对于现有技术的转动阀的动态密封对振动的敏感程度较小、对材料的性能和加工参数要求较低、泄漏风险也较小。另外,该车辆用热管理模块与现有技术的车辆用热管理模块相比整体结构相对简单,因而所需的空间小且成本低。
本发明公开了一种蓄电池组热管理装置及方法,所述装置包括壳体,其特征在于:所述壳体内设有左中右三个腔室,依顺分别安置有控制模块、蓄电池组以及散热模块,所述壳体右侧壁上设置有用于排风降温通孔一,左侧壁上设置有用于平衡壳体内部气压的通孔二,中腔室的前后壁板下部安置有若干加热模块,其中所述控制模块分别与所述加热模块、散热模块和蓄电池组电连接。本发明为一种温度可调控的蓄电池组热管理装置,可工作于最优工作温度下,从而增加蓄电池组放电容量,增大电动汽车行驶里程。尤其对于电动汽车冬季行驶,可以明显提高行驶里程。
本发明提供了一种车辆用热管理模块及其流量测量方法。该车辆用热管理模块采用在模块主体的内部空间往复直线运动的柱塞组件实现对介质经由出口管道的流量的控制,并且该车辆用热管理模块还包括利用感应电流的原理精确测量柱塞组件相对于模块主体的开度的感测机构。这样,该感测机构能够通过其自身内部的感测电路内的感应电流(感应电势)的变化对应地精确确定柱塞组件相对于模块主体的开度,由此能够精确确定与该开度对应的流量并进行精确控制。
本发明公开了一种CO2热泵空调整车热管理系统,包括:依次相连的压缩机、第一三通阀、室外换热器、第一电磁阀、气液分离器、第一电子膨胀阀、室内换热器、第二三通阀和所述气液分离器形成第一连通回路;依次相连的压缩机、第一三通阀、室外换热器、第一电磁阀、气液分离器、第二电子膨胀阀、电池冷却换热器、第二三通阀和所述气液分离器形成第二连通回路;依次相连的第一水泵、电池冷却换热器、电池包和第三三通阀形成第三连通回路;其中,所述气液分离器带有回热器;当所述热管理系统处于车内制冷和电池冷却模式时,所述第一连通回路、所述第二连通回路和所述第三连通回路同时开启。
一种基于飞机液压系统及微型蒸发式制冷循环的分布式飞机热管理系统,包括液压油油箱、液压泵、节流阀、液压系统作动元件、液压油-空气热交换器、蒸发式液冷循环系统、燃油-液压油换热器、燃油系统、飞机蒙皮换热器,用双冷凝器的环路热管(LHP),将液压作动元件如起落架等产生的热量,直接转移到飞机蒙皮的内外面板加以耗散,增加了有效散热,避免了液压油过度升温;利用液压循环下游低压液压油,经冲压空气降温后,作为热沉对机载设备冷却,防止了燃油高温的形成、减少了燃油压降、减少了部件数量和降低了飞机性能代偿损失,充分利用了液压系统分布范围广、热量收集力强的优势,使机载设备冷却系统布局更灵活方便。