本发明提供了一种基于超临界介质的闭式循环热管理集成系统,所述系统包括:发动机冷却子系统、冷却介质压缩子系统、功率输出子系统、回热子系统和燃油换热子系统。本发明所提供的一种基于超临界介质的闭式循环热管理集成系统以超临界二氧化碳作为介质采用微通道高效换热器可将热端壁面温度降低的同时输出功率。相比于燃油直接冷却方案,可降低燃油温升,避免了燃油的气化结焦风险,解决燃油热沉不足等问题。经过吸热后的超临界二氧化碳可利用涡轮膨胀输出功率或发电。可将约30%-40%热量(目前国内闭式循环效率约30%)转化为轴功或电加以利用,可解决综合能源系统的功率提取问题。
本公开涉及一种水热管理系统及车辆,其中水热管理系统包括燃料电池堆冷却系统以及整车供暖系统,水热管理系统还包括换热器,换热器同时接入到燃料电池堆冷却系统和整车供暖系统中,以使燃料电池堆冷却系统产生的热量能够传递给整车供暖系统。通过上述技术方案,能够将燃料电池发动机产生的热量通过换热器交换给整车供暖系统中的冷却介质,保证燃料电池发动机能够在适宜的温度下工作的同时,充分利用燃料电池发动机产生的热量提升乘客舱中的温度。
本发明公开了一种智能用热管理系统,包括设置在总进水管上的进水端总阀门和设置在总回水管上的回水端总阀门,总进水管和总回水管之间设置有若干个供热支路,每个供热支路上分别设置有进水端分阀门和回水管分阀门,在总进水管、总回水管和各供热支路上设置有水温传感器、水压传感器和流量传感器,进水端总阀门、回水端总阀门、进水端分阀门和回水管分阀门上分别设置有控制阀门开度的电动执行机构,水温传感器、水压传感器和流量传感器与控制器的输入端通讯连接,电动执行机构与控制器的输出端通讯连接,控制器还连接有若干个分布在房屋内的室温传感器。本发明能够改进现有技术的不足,简化了用热系统的管理复杂度。
本发明公开了一种智能用热管理系统,包括设置在总进水管上的进水端总阀门和设置在总回水管上的回水端总阀门,总进水管和总回水管之间设置有若干个供热支路,每个供热支路上分别设置有进水端分阀门和回水管分阀门,在总进水管、总回水管和各供热支路上设置有水温传感器、水压传感器和流量传感器,进水端总阀门、回水端总阀门、进水端分阀门和回水管分阀门上分别设置有控制阀门开度的电动执行机构,水温传感器、水压传感器和流量传感器与控制器的输入端通讯连接,电动执行机构与控制器的输出端通讯连接,控制器还连接有若干个分布在房屋内的室温传感器。本发明能够改进现有技术的不足,简化了用热系统的管理复杂度。
本发明公开了一种基于有限元法的风电主控柜体热管理分析及优化方法,包括以下步骤:从柜面布置图获取风电主控柜体的材料属性及其内部的断路器及继电器的参数;对断路器及继电器进行初始的几何建模得三维模型;将三维模型进行有限元网格划分,得有限元网格模型;获取加热器及风扇的设计参数;建立风电主控柜体及内部流体的三维模型;进行流体力学网格划分得到流场网格模型;对流场网格模型进行约束;确定流场内流体的物理参数;对流场网格模型的温度场和流场进行计算得到流场分析结果;判断风电主控柜体的流场分析结果是否符合行业标准,如果符合,则结束,如果不符合,则对设计方案进行优化。本发明无需制造出实体模型就能够得到精确的计算结果。