本发明涉及一种纯电动汽车热管理系统,包括压缩机,压缩机分别连接截止阀一、截止阀二,截止阀二通过外部换热器分别连接截止阀七、电子膨胀阀二,截止阀一通过暖风芯体分别连接截止阀七、电子膨胀阀二,电子膨胀阀二连接冷却器二,冷却器二分别连接电子膨胀阀一、截止阀八,截止阀七通过电子膨胀阀一分别连接截止阀三、截止阀四、截止阀五,截止阀三通过外部换热器连接截止阀九,截止阀四连接冷却器一,截止阀五通过蒸发器连接单向阀二,截止阀九、冷却器一、截止阀八分别连接单向阀一,单向阀一、单向阀二分别连接干燥罐;本发明极大地降低了系统能耗,增加了整车续驶里程,且所需零部件减少,能够降低整车成本,节省了布置空间。
本发明公开了一种纯电动汽车热管理系统乘员舱优先制冷控制方法,其特征在于:包括1)进入同时制冷模式,开启电动制冷系统和电池冷却水回路;2)进入乘员舱优先制冷模式,关闭电池冷却水回路;3)保持进入乘员舱优先制冷模式;4)退出同时制冷模式,重新开启电池冷却水回路;5)保持退出同时制冷模式;6)重复循环步骤2)和步骤4),直到退出同时制冷模式。在保证动力电池安全性的前提下,优先保证乘员舱的制冷需求;系统进行频繁地切换,从而保证了系统运行的稳定性。
本发明涉及电动汽车热管理技术领域,具体涉及电动车热管理方法及系统。该方法包括以下步骤:S1:发出电池冷却需求的指令;S2:获取乘员舱冷却回路的运行信号,若乘员舱冷却回路运行,执行S3步骤,若乘员舱冷却回路关闭,执行S4步骤;S3:以最大流量运行电池冷却回路第一设定时间后,再启动电池热管理系统Chiller;S4:直接启动电池热管理系统Chiller,同时以最大流量运行电池冷却回路。本发明能够解决现有技术中直接开启电池制冷,降低了乘员舱制冷效果,会导致乘员舱温度急剧升高的问题。