本实用新型公开了一种电动汽车整车冷却系统,具有:电驱动冷却系统、空调液冷电池包系统、电池包利用电机冷却回路预热加热系统;合理有效的控制冷却系统的循环水路,达到有效提高热管理系统的实际运行性能,并能够有效降低整车能耗水平。
本申请公开了一种车辆的热管理系统的控制方法、装置及车辆,涉及车辆领域。VCU在对电池包进行降温时,可以基于检测到的每个电池模组的温度和进水口温度,控制与该电池模组对应的换热管路内的比例阀的开度,由此可以实现对释放不同热量的电池模组的均衡换热,从而有效确保了电池包的降温效果,并提高了电池包的降温效率。
本实用新型揭示了一种增程式电动车热管理系统,主要分为发动机冷却系统、电驱动冷却系统、电池组独立冷却系统及空调冷却系统回路,其中空调系统冷却系统回路包括与电池组冷却系统共同作用的复合冷却系统,通过集成化整车热管理系统,在不通过工况下,各冷却系统独立工作,同时又相互作用,达到有效合理工作,在达到有效冷却热源部件的目的,保障各元件能够在一个相对合理的温度下工作的同时,降低整车能量损耗水平。
本发明公开了一种动力电池热管理控制系统,包括,电池管理模块,用于采集车辆电池系统的温度信息,并将温度信息发送给车辆远程通讯模块;接收车辆远程通讯模块发送的制冷指令,并将制冷指令发送给空调制冷控制模块;道路信息获取模块,用于获取车辆的路径规划信息和路况信息,并将信息发送给车辆远程通讯模块;车辆远程通讯模块,接收温度信息、路径规划信息和路况信息,并将信息发送给处理模块,接收处理模块发送的制冷指令,并将制冷指令发送给电池管理模块;处理模块,接收车辆远程通讯模块发送的信息,基于信息生成制冷指令,并将制冷指令发送给车辆远程通讯模块;空调制冷控制模块,根据制冷指令控制车辆空调系统。
本发明提供了一种整车能量流测试系统及方法,涉及整车能量流测试技术领域。该整车能量流测试系统包括上位机和与上位机通信连接的数据采集单元,数据采集单元用于同步采集并记录整车的多个子系统的实时数据,并将实时数据传递至上位机。上位机用于接收并监测实时数据,以获取整车级能量流。该整车能量流测试系统能够实现整车级的能量流测试,了解分析整车在不同使用环境、不同使用工况下能量流情况,从而为整车各系统、各部件效率优化及降低整车能量消耗率提供依据和支撑,提高整车系统集成匹配能力,优化整车架构及整车控制策略。
本发明提供一种电池温场模拟装置、系统和电池热管理的验证方法。电池温场模拟装置包括:壳体;产热单元,用于产生热量,安装于壳体的内部;导热介质,填充于产热单元和壳体之间;控制器,用于采集并发送产热单元和导热介质的温度数据,并控制产热单元以一预设方式产生热量。本发明实施例的电池温场模拟装置可以在电池的热管理结构和策略设计完成后,对设计进行快速有效地验证,减少了试验周期和所需的辅助设备,大大减少了测试成本。另外,该电池温场模拟装置可以模拟不同型号电池的不同发热状态,具有很强的适应性,同时安全可控,便于试验人员调整参数和记录测试结果,有利于试验结果的准确性和科学性。
本发明公开了一种汽车的热管理电池系统、热管理方法及电池控制装置。所述汽车的热管理电池系统包括:泵、电池箱体、均热板和电池模组。所述电池箱体设置有冷却液流道;所述均热板形成有真空腔体;所述均热板与所述冷却液流道通过所述泵连接,形成内循环散热回路。所述真空腔体还设置有与整车散热系统连通的第一冷却液接口;所述泵设置有与整车散热系统连通的第二冷却液接口,所述真空腔体、冷却液流道、泵以及所述整车散热系统连接,形成整车散热回路。在电池系统冷却过程中,本发明的内循环散热回路,为整车散热系统分担了所要散发的热量,降低了散热的消耗,节约了能源,提高了散热效率。
本实用新型涉及一种电动汽车热管理系统,包括压缩机、室外冷凝器、蒸发器、膨胀阀、室内冷凝器和换热器;制冷工况时,换热器用于为电机降温,当双通道三通阀与电池水循环管路连通时;热泵工况时,电动汽车热管理系统增加了一个制冷剂切换回路,制冷剂液体吸收电机水循环管路的热量,将电机余热回收到空调系统内,提高热泵空调制热能力;本实用新型结构设计合理,将车载空调系统与电池水循环管路、电机水循环管路相互配合构成整体系统,用于对车室、电机、电池的热进行综合管理,提高了热泵系统效率和电动汽车的续航里程。
本实用新型涉及一种带电池热管理的车载空调系统,包括热交换器、冷凝器和蒸发器;热交换器上形成有冷却液入口和出口以及制冷剂入口和出口,电池换热板通过水泵连接在热交换器的冷却液出口和入口之间;冷凝器的出口通过膨胀阀连接可调三通电磁阀的入口,可调三通电磁阀的两出口并联热交换器的制冷剂入口和蒸发器的入口,热交换器的制冷剂出口和蒸发器的出口通过三通连接压缩机的入口,压缩机的出口连接冷凝器的入口。本实用新型可以减少一个电磁阀和一个膨胀阀,不仅可以降低成本,简化系统方案,而且可以通过可调电磁三通阀可以调节制冷量的流量分配,根据不同工况调整通过热交换器和蒸发器的制冷剂流量,以解决现有方案中制冷剂无法分配的问题。
本发明公开了一种基于相变材料的动力电池热管理方法,动力电池的电芯被PCM散热板包围,热管理方法包括散热阶段和加热阶段,散热阶段时,当电芯温度达到35℃时,PCM散热板吸收电芯放电时产生的热量并改变形态,降低动力电池的温度;加热阶段时,当电芯温度低于35℃时,PCM散热板将储存的热量传导给电芯,维持电芯的恒温状态。本发明具有散热和均温性能效果好,系统结构简单的特点,对温度的管理具有可行性。同时对于电池PACK的轻量化,能量密度的提升有着相当重要的作用,同时相变材料的利用有效的解决了风冷和液冷热管理中的弊端,大大降低了生产成本、使用成本。
本发明公开了一种车用动力电池风冷系统及其控制方法和一种设置有该风冷系统的汽车,其控制策略简单、结构简单,而且能够有效降低车用动力电池包内部温差。该控制方法为:当满足第一预设条件时,车用动力电池风冷系统启动;车用动力电池风冷系统启动后,其冷却过程包括往复循环的步骤一和步骤二;步骤一,当满足第二预设条件时,冷却空气由电池箱体的第一通风口进入电池箱体的内部,并从电池箱体的第二通风口流出,第一通风口和第二通风口分别位于电池箱体的两端;步骤二,当满足第三预设条件时,冷却空气由第二通风口进入电池箱体内部,并从第一通风口流出。
本发明公开了一种车辆电池热管理方法及装置,属于汽车电池领域。所述方法包括:获取车辆的电池包平均温度;当所述电池包平均温度满足任一热管理模式的触发条件时,确定目标电池包平均温度;基于所述目标电池包平均温度与所述电池包平均温度的第一差值,确定温度偏移量,所述温度偏移量为温度控制过程中各个子控制周期内的目标温度变化量;获取所述车辆的冷却液进水口温度;基于所述热管理模式对冷却液进行对应的温度控制。本发明通过控制冷却液进水口温度来间接控制电池包平均温度,利用冷却液比热容大的特性,实现电池包平均温度的平稳上升或下降,提升了电池寿命。