本发明涉及动力电池热管理技术,属于动力电池领域。一种电池包热管理方法,其特征在于:在电池包的电池单体外设置有包裹电池的导热套筒,所述导热套筒和具有热传输功能的导热管路相连接,通过导热管路的热传输,对电池包的电池实现热交换。应用本电池包热管理方法进行热管理的装置,其特征在于:包括导热管路和与导热管路固接的导热套筒,所述导热套筒包裹在电池包的电池单体外,导热套筒的内部和电池的外部尺寸配合,导热套筒外侧固接在导热管路上,所述导热管路通过热传输将电池产生的热量传导出去,对电池包的电池实现热交换。本发明提高了温度调节的效果,又加强了电池和热管理装置的机械性能,还轻便易组装。
本发明公开了一种锂离子电池热管理系统,该系统包括电池箱体及电池组,电池箱体具有密封的内腔,电池组包括至少一组电池单体,各电池单体沿前后方向间隔布置且均位于所述内腔中,内腔的前部设有空气泵,一组电池的左右方向上的一侧设有与所述空气泵连通的进风风道、另一侧设有回风风道,电池箱体上设有用于将进风通道中的热量散至外界的散热器,进风风道中的经过散热后的空气通过回风风道流向所述空气泵所处空间。进风风道、回风风道位于封闭的电池箱体内部、不与电池箱体的外界连通,可以避免锂离子电池箱内部遭受灰尘侵蚀。
本实用新型涉及一种改善发动机机油滤清器热管理性能的隔热结构,包括三元催化器本体及机油滤清器,所述三元催化器本体的两端分别衔接有三元催化器进气段和三元催化器排气段,所述机油滤清器靠近三元催化器排气段;所述三元催化器排气段朝向机油滤清器的一侧设有机油滤清器隔热罩。本实用新型通过隔断三元催化器排气段与机油滤清器之间的热量传递,增加机油密封圈的寿命;结构简单,成本低。
本发明实施方式公开了一种新能源汽车的热管理系统及其调节方法和新能源汽车。热管理系统包括:电机水路(1);电池水路(2);位于电机水路(1)和电池水路(2)之间的交流水路(3),用于将电机水路(1)的热量引入电池水路(2)。交流水路(3)包括:与电机水路(1)的出水口连接的开关阀(V1);与开关阀(V1)连接的调速阀(P3);与电机水路(1)的回水口连接的单向截止阀(V2);与单向截止阀(V2)连接的交流水路流量传感器(F3)。本发明实施方式通过交流水路(3)将电机水路(1)与电池水路(2)相接通,在电池需要加热时,可以利用电机水路(2)的热量对电池水路(1)中的电池组进行加热,从而节约能源。
本发明涉及一种适于高超声速飞行器的综合热管理装置,包含温度控制活门(1),蒸发器(2),风扇(3),座舱(4),压缩机(5),冷凝器(6),节流阀(7),关断活门(8),第二关断活门(9),空气碳氢换热器(10),流量调节活门(11),过滤器(12),第三关断活门(13),第四关断活门(14),第二风扇(15),电子设备(16),泵(17)等,整个系统以存储在碳氢燃料箱(21)中的碳氢燃料为纽带,将各个分系统连接起来。整个系统以碳氢燃料为纽带,将各个分系统连接起来,以实现高超声速飞行器的热管理。与现有技术相比,本发明所具有的优点和积极效果,例如性能的提高、成本的降低等。
本发明涉及一种适于瞬时高热流的热管理装置,包含流量控制活门(1),过滤器(2),空气液氢换热器(3),关断活门(4),第二关断活门(5),风扇(6),座舱(7),泵(8),储液箱(9),电子设备(10),液氢燃料箱(13)中的燃料通过泵(14)做功,流入空气液氢换热器(3)并吸收热量后,进入发动机(16)。本发明利用冲压空气实现座舱空气调节功能,系统结构简单;利用单相液体回路系统有效带走电子设备、第二动力系统和液压系统的集中热载荷;利用储液箱浸没在液氢燃料箱内充当“热缓冲器”,有效冷却瞬时高热流热载荷。
本发明实施方式公开了一种计算电动汽车综合热管理参数的方法和装置。方法包括:基于电池模组的最大充放电能力,确定电池模组的传热结构;基于所述传热结构,确定车载可充电储能系统的热管理参数;基于车载可充电储能系统的热管理参数和乘员环境热管理参数,确定电动汽车综合热管理参数。
本实用新型涉及一种用于圆柱体电池组的热管理系统,包括异形导热板、微热管阵列板和热源,散热时,异形导热板的板面的平面结构贴合微热管阵列板的蒸发段,微热管阵列板的蒸发段吸收异形导热板传递的圆柱体电池组热能后发生热管效应再由微热管阵列板的冷凝段与外界换热;预热时,热源设置在微热管阵列板的蒸发段,异形导热板的板面的平面结构贴合微热管阵列板的冷凝段,微热管阵列板的蒸发段吸收热源的热能后发生热管效应再由微热管阵列板的冷凝段放热通过异形导热板导热至圆柱体电池组。该热管理系统集散热与加热功能为一体,保证了圆柱体电池组温度均匀,传热效率高、体积紧凑、重量轻,提高了换热效率和效果。
本发明实施方式公开了一种计算车载可充电储能系统的热管理参数的方法和装置。方法包括:基于电池模组的最大充放电能力,确定电池模组的工作温差需求参数及电池模组的工作温度需求参数;基于所述电池模组的工作温差需求参数及所述电池模组的工作温度需求参数,确定电池模组的传热结构;基于所述传热结构,确定车载可充电储能系统的热管理参数。
本实用新型涉及一种集中式热电联产电站,包括发电机组,发电机组包括采所述发电机组包括天燃气发动机以及发电机;发电机组的一侧设有热管理装置,所述热管理装置的上方架高预设距离设有支撑平台,所述支撑平台上设有余热回收装置及消声器,所述余热回收装置及消声器进气端通过烟气管路连接至所述发电机组的烟气排出口,所述余热回收装置及消声器的上方通过支撑架设有散热装置,所述散热装置包括两个散热水箱,所述散热水箱内设有散热风扇,所述两个散热水箱与所述热管理装置相连接并分别通过高温水冷却循环管路以及低温水冷却循环管路连接所述发电机组。本实用新型使得电站的占地面积减少,实现小型化。
本实用新型涉及一种热电联产电站,包括设于地面上的综合控制柜、操作台以及发电机组,所述发电机组包括采用天燃气的发动机以及发电机;所述发电机组的一侧设有热管理装置,所述热管理装置的上方设有余热回收装置,所述发电机组的烟气排出侧通过第一烟气支管连接消声器,所述消声器连接第一排气管,所述发电机组的烟气排出侧通过第二烟气支管连接所述余热回收装置,所述余热回收装置的烟气排出端连接第二排气管,所述余热回收装置的上方设有与所述发电机组通过冷却水循环管路相连接的散热装置。本实用新型使得电站的占地面积减少,实现小型化。
本发明涉及一种基于两速电控水泵的发动机热管理控制方法及装置。该方法包括:当电控水泵置于两速模式时,根据发动机转速与负载率以及各调控子单元获取的被控参数将电控水泵设置为半速运转或者全速运转。该装置基于上述方法实现。本发明中水泵转速与发动机负荷关联,实现更加精准的控制水泵的转速;同时还可以兼顾到发动机其他热管理的需求,提高发动机工作的可靠性。