本发明涉及一种锂离子电池相变热管理系统的优化方法,步骤如下:(1)获取电池和模组的外部设计参数、电极材料的电化学参数和热物性参数、相变材料的热物性参数;(2)建立一维电化学-三维热耦合模型;(3)对比不同放电倍率下实验和模拟分别得到的电压曲线和温度曲线结果,验证模型的正确性;(4)采用模型分析单一变量在不同放电倍率下,满足电池组热管理目标情况下的最优值;(5)以电池体积占模组总体积最大为优化目标函数,以最优单一变量组合作为优化初始值,以热管理目标作为约束,对变量值进行多参数优化求解。本发明的方法克服了单参数优化忽略不同变量组合对模组热性能影响的问题,以及人为选定变量取值带来的主观性和不全面性。
本发明公开了一种燃料电池系统及其热管理方法,该系统包括第一循环液路和第二循环液路,控制器用于根据第一温度传感器检测的温度信息控制第一或第二循环液路工作;该热管理方法包括,利用控制器判断电解液实时温度是否在最佳温度范围内:如果是,通过控制器控制第一、第二换向阀,从而令第二循环液路工作;如果否,则通过控制器控制第一、第二换向阀,从而令第一循环液路工作,如果实时温度高于第一阈值,则利用蓄能加热装置吸收循环液热量,如果实时温度低于第二阈值,则利用蓄能加热装置加热循环液。基于双循环液路结构设计,本发明有效解决燃料电池系统的运行散热、低温运行及低温启动问题,具有可靠性强、能源利用率高、成本低等优点。
本发明提供一种动力电池包高效热管理系统,包括电池包散热流道装置、储能装置、散热器和电子控制单元,电池包散热流道装置的出口与散热器的进口通过第一管道连接,散热器的出口与电池包散热流道装置的进口通过第二管道连接,储能装置的进口通过第一支管与第一管道连通,储能装置的出口通过第二支管分别与第一管道和第二管道连通,第一支管上设有第一电磁阀,第一管道上靠近散热器的一侧设置有第二电磁阀,第一支管和第二支管之间的第一管道上设有第三电磁阀,第二支管靠近第二管道的一侧设有第四电磁阀,电子控制单元与第一电磁阀、第二电磁阀、第三电磁阀和第四电磁阀电连接,本发明能够与电池包充分接触,实现回收热量再利用等优点。
本实用新型公开了一种纯电动汽车热管理控制系统,包括电池、CAN总线、热管理控制单元、感应器和执行器,所述热管理控制单元、CAN总线、感应器和执行器均与电池相连,电池为热管理控制单元、CAN总线、感应器和执行器供电,所述热管理控制单元通过CAN总线与感应器连接,热管理控制单元与感应器之间可以进行信号交互,所述热管理控制单元通过硬线与各执行器连接,通过发送指令控制执行器的动作及状态。本实用新型涉及电动汽车热管理系统领域,具体是提供了一种结构简单,集中控制电池温度、电量检测和热量控制,可根据电机运行温度及电池电量自动报警,并将多余热量集中回收供暖的纯电动汽车热管理控制系统。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:换热回路,换热回路设有室外换热器、室内蒸发器、压缩机、热泵换热器和电池换热器;传动回路,传动回路设有散热器和传动及控制组件;电池回路,电池回路设有电池组件,电池换热器与电池回路热连通;乘员舱回路,乘员舱回路设有暖风芯体,热泵换热器与乘员舱回路热连通。本实用新型实施例的车辆的热管理系统,通过设置换热回路,可以在高温时对电池组件和 或乘员舱进行冷却,在低温时对电池组件和 或乘员舱进行加热,便于控制电池组件的工作温度,提高乘员舱的温度舒适性,降低车辆的行驶能耗。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:电池支路;冷却支路;传动支路;散热支路;第一换向阀,具有第一状态和第二状态,在第一状态时第一换向阀连通电池支路与传动支路,且隔断电池支路与冷却支路,在第二状态时第一换向阀连通电池支路与冷却支路,且隔断电池支路与传动支路。本实用新型实施例的车辆的热管理系统,通过设置散热支路和冷却支路,可以在高温时对电池组件进行冷却,便于控制电池组件的工作温度,提高电池组件的工作可靠性,降低车辆的行驶能耗。
本实用新型提供了一种比例阀及汽车热管理系统,涉及流体介质控制阀技术领域,主要目的是现有技术中存在的比例阀在调节过程中容易损坏的技术问题。该比例阀包括内设腔体的阀体和阀芯组件,所述阀体为柱状结构,其相对设置的两端分别设置有第一接口和封盖,其侧壁上沿轴线方向依次设置有第二接口和第三接口;所述第二接口和所述第三接口之间设置有一朝向轴线方向凸起的台阶孔;所述阀芯组件包括阀座和沿轴线方向设置在所述阀座两侧的两个换向节,所述阀芯组件沿轴线方向滑动移动;当所述阀座与所述台阶孔抵接时,所述换向节与所述封盖之间存在一间隙。由于台阶孔的存在,可以有效限制阀芯组件的移动范围,避免比例阀损坏。
本发明属于电池热管理技术领域,公开了一种用于电池热管理的抗泄漏相变材料及其制备方法和应用。所述相变材料是将石蜡于60~90℃下融熔,加入膨胀石墨充分搅拌;再加入热塑性共聚酯弹性体升温至165~200℃,待热塑性共聚酯弹性体融熔并与石蜡、膨胀石墨充分混合后,将所得混合物加入过氧化物交联剂和助交联剂三羟甲基丙烷三甲基丙烯酸酯对热塑性共聚酯弹性体进行交联,待出现凝胶现象后保温,自然冷却制得。本发明的相变材料具有较高的抗泄漏性能,可用于电池热管理系统领域中。
本发明公开了一种智能热管理防水型动力电池箱,其方案是:电池箱主要由六个部分组成,分别是上盖组件、密封胶条、箱体组件、电池组件、管理系统和空调系统。电池组件包括相变材料组件、电池芯和连接片。管理系统包括电极连接杆、连接器、控制器和通讯接口。工作时当控制器检测到电池芯的温度和电池芯之间的温度差在设定范围内,由相变材料组件负责吸收电池组的热量;当控制器检测到电池芯的最高温度超出设定值,则启动空调系统给电池箱内部制冷降温;当控制器检测到电池芯的温度低于设定值,启动空调系统给电池箱内部制暖升温。由于箱体设计的特殊密封结构,整个电池箱具有热管理智能化、低能耗、防水和整体安全性高的特点。
本发明公开了一种高强度热管理材料,属于热管理材料技术领域,其内部结构存在两种情形,第一种情形的热管理材料的竖截面由上至下依次包括表面增强层、高强度硅胶层、第一胶黏层、均热层及第二胶黏层或保护层;第二种情形的热管理材料的竖截面由上至下还可以依次包括表面增强层、超高强度硅胶层、均热层、保护层。本发明制得的热管理材料不仅具备常规导热垫片优异的导热性能,还具有耐磨损、防滑、高强度、不易粘附灰尘、可回弹、低蠕变等特性,还可以兼具储热、均热性能。
本发明公开了一种锂电池半成品的热管理方法、锂电池的制作方法,所述锂电池半成品的热管理方法包括步骤:获取锂电池半成品;其中,所述锂电池半成品的温度为第一预设温度;采用冷却夹具夹持所述锂电池半成品并冷却至第二预设温度;其中,所述第二预设温度低于所述第一预设温度,所述冷却夹具采用复合相变材料制成,所述第二预设温度为所述复合相变材料的相转变温度。本发明通过采用复合相变材料制成的冷却夹具,并在锂电池半成品进行高温干燥或感温烘烤后利用冷却夹具进行冷却,可在短时间内迅速吸收大量的热能,从而达到温度控制的目的。而且这种冷却方法不会造成凝露,确保了锂电池的合格率。
本发明公开的一种带双电子膨胀阀控制的客车电动空调智能控制装置,包括一空调控制主板,该空调控制主板包括第一单片机、第一驱动电路、第二驱动电路、第一温度及压力采集电路、第二温度及压力采集电路、温度传感器采集电路;第一驱动电路的的输入接第一单片机而输出接控制乘客区空调的第一电子膨胀阀,第二驱动电路的输入接第一单片机而输出接控制电池热管理的第二电子膨胀阀。该装置降低了双电子膨胀阀的控制器成本和空调系统复杂度,实现单个控制主板对双电子膨胀阀的控制,满足乘客区和电池同时制冷降温的控制需求。