本实用新型公开的一种带双电子膨胀阀控制的客车电动空调智能控制装置,包括一空调控制主板,该空调控制主板包括第一单片机、第一驱动电路、第二驱动电路、第一温度及压力采集电路、第二温度及压力采集电路、温度传感器采集电路;第一驱动电路的输入接第一单片机而输出接控制乘客区空调的第一电子膨胀阀,第二驱动电路的输入接第一单片机而输出接控制电池热管理的第二电子膨胀阀。该装置降低了双电子膨胀阀的控制器成本和空调系统复杂度,实现单个控制主板对双电子膨胀阀的控制,满足乘客区和电池同时制冷降温的控制需求。
本实用新型公开了一种传热装置及电池热管理装置,其中,传热装置,包括传热外壳,传热外壳内设有与制冷剂出入口连接的制冷剂流道,传热外壳的端部设有制冷剂出入口。当电池需要制冷时:制冷剂输送装置将低温低压的制冷剂由冷剂出入口进入制冷剂流道中吸收电池组中的热量,可以调节制冷剂的流量实现对电池温度的精确控制,进而使得电池组的使用安全性提高。
本发明提供了一种电池包热管理系统及其控制方法,上述电池包热管理系统设于电动汽车,用于对上述电动汽车的电池包进行热管理,上述热管理系统的控制方法包括:收集上述电动汽车的电池包的电芯温度;收集上述电池包的工作工况,上述工作工况包括快速充电模式;以及基于上述电芯温度与上述工作工况控制上述电池包热管理系统的加热模块为上述电池包加热,或控制上述电池包热管理系统的散热模块为上述电池包散热。根据本发明所提供的电池包热管理系统及其控制方法,能够使电池包适应于极低温和极高温环境,并且能够有效保持电池包工作在最佳工作温度区间,有利于提高电池包使用效率并且延长电池包使用寿命。
本发明提供一种电动车热管理使能控制方法、存储介质及电子设备,其中的控制方法,能够在响应到需要开启热管理功能的需求信号时,继续获取行车数据,根据行车数据可以推断驾驶员的驾驶意图,结合驾驶意图和电池包的当前温度进一步判断是否确实需要开启热管理功能,如果此时判断结果为是的情况下,再启动热管理功能。因此,通过本发明的上述方案,不单纯的以电池包的温度值作为开启热管理功能的判断条件,而是增加了驾驶意图作为进一步判断是否开启热管理功能的条件,避免热管理功能未开启就停车的情况出现所造成的能源浪费。
本发明公开的一种带双电子膨胀阀控制的客车电动空调智能控制装置,包括一空调控制主板,该空调控制主板包括第一单片机、第一驱动电路、第二驱动电路、第一温度及压力采集电路、第二温度及压力采集电路、温度传感器采集电路;第一驱动电路的的输入接第一单片机而输出接控制乘客区空调的第一电子膨胀阀,第二驱动电路的输入接第一单片机而输出接控制电池热管理的第二电子膨胀阀。该装置降低了双电子膨胀阀的控制器成本和空调系统复杂度,实现单个控制主板对双电子膨胀阀的控制,满足乘客区和电池同时制冷降温的控制需求。
本实用新型公开了一种燃料电池汽车动力系统,包括传统汽车白车身,以及分别安装在车身前机舱、地板下和后备箱位置的燃料电池驱动及高压附件系统、高压配电系统和燃料电池供氢及排气系统。本实用新型基于传统汽车平台开发的功率混合型燃料电池汽车动力系统将传统燃油汽车进行改制和升级,充分利用电堆系统和电池系统联合驱动特性,不仅可以解决传统燃油车排放问题及环保问题,也可作为示范运行车进行燃料电池技术推广,逐步达到终极零排放目标。该系统具备多种功能模式,包括:动力电池和燃料电池联合驱动及单独驱动,停车发电、行车充电和制动能量回收等。
本实用新型实施例公开了一种电动车热管理系统及电动车,其包括:外部换热器、第一节流阀、气液分离器、压缩机、中间换热器、第一水泵和暖风芯体;中间换热器具有热源侧和冷源侧,热源侧与冷源侧进行热量交换;冷源侧内的冷却液经第一水泵抽至暖风芯体,暖风芯体内的冷却液排入冷源侧内;外部换热器的第一进液口与热源侧的第二排液口连接,外部换热器的第一排液口与气液分离器的第三进液口连接,热源侧的第二进液口通过压缩机与气液分离器的第三排液口连接,第一节流阀设置在所述第一进液口与第二排液口的连接管路上。利用本实用新型实施例能够提高供暖效率,降低供暖时的能量消耗,减小电动车耗电量,降低续航里程的衰减幅度,提高续航里程。
本发明涉及电动车设备领域,尤其是一种双区电池热管理系统及方法。本发明针对现有技术存在的问题,提供一种双区电池热管理系统及方法,为最大限度的扩大电池包系统的温度适应范围,将电池包分为大容量电池A和小容量电池B两个区做动力源,分区热管理(加热或冷却),并通过BMS电源管理系统、冷却控制系统以及热管理回路系统产生热空气和冷空气,并通过BMS电源管理系统控制两个电子三通阀的位置,实现对大容量电池包和小容量电池包的加热或冷却。本发明包括BMS电源管理系统、冷却控制系统以及热管理回路系统等,通过形成冷空气或热空气回路,对双电池系统进行加热或冷却。
本发明实施例公开了一种电动车热管理系统及电动车,其包括:外部换热器、第一节流阀、气液分离器、压缩机、中间换热器、第一水泵和暖风芯体;中间换热器具有热源侧和冷源侧,热源侧与冷源侧进行热量交换;冷源侧内的冷却液经第一水泵抽至暖风芯体,暖风芯体内的冷却液排入冷源侧内;外部换热器的第一进液口与热源侧的第二排液口连接,外部换热器的第一排液口与气液分离器的第三进液口连接,热源侧的第二进液口通过压缩机与气液分离器的第三排液口连接,第一节流阀设置在所述第一进液口与第二排液口的连接管路上。利用本发明实施例能够提高供暖效率,降低供暖时的能量消耗,减小电动车耗电量,降低续航里程的衰减幅度,提高续航里程。
本发明提供一种监控锂电池储能系统热管理与火灾预警的方法和系统,所述方法和系统通过实时采集锂电池储能系统的温度和压力信息,并根据所述温度和压力信息与预先设置的阈值的比较来判断是否进行散热等温度控制措施、是否断开电网、是否发出火灾预警警报并启动灭火措施、是否启动防爆措施,所述方法和系统是将锂电池储能系统的热管理与火灾预警相结合的方法和系统,比较好地解决了锂电池储能系统的正常范围内的热管理和电池失控情况下的火灾预警的衔接问题。
本发明提供了一种电池包热管理系统及其控制方法,上述电池包热管理系统设于电动汽车,用于对上述电动汽车的电池包进行热管理,上述热管理系统的控制方法包括:收集上述电动汽车的电池包的电芯温度;收集上述电池包的工作工况,上述工作工况包括快速充电模式;以及基于上述电芯温度与上述工作工况控制上述电池包热管理系统的加热模块为上述电池包加热,或控制上述电池包热管理系统的散热模块为上述电池包散热。根据本发明所提供的电池包热管理系统及其控制方法,能够使电池包适应于极低温和极高温环境,并且能够有效保持电池包工作在最佳工作温度区间,有利于提高电池包使用效率并且延长电池包使用寿命。
本发明公开了一种锂电池储能系统的热管理预警方法包括:实时监控锂电池储能系统的温度,并对所述锂电池储能系统进行散热处理;当所述温度达到第一预设温度时,切断锂电池储能系统与电网的连接,并对所述锂电池储能系统的升温速率进行实时监控;当所述升温速率达到预设升温速率时,发出预警信息,并对所述锂电池储能系统启动灭火措施;所述方法及装置通过对锂电池储能系统温度、升温速率等的实时监控,实时确认锂电池储能系统的状态变化;通过多个预设的阈值,对达到特定状态的锂电池储能系统进行针对性处理和控制,很大程度上避免了锂电池储能异常导致的失控情况,并对已失控的情况进行第一时间的控制和报警,将损失降低到最小。