本实用新型提供的带热设计的MMC子模块,能够解决子模块热耗散的问题,采用强迫对流冷却的方式,在自然对流的条件下,给散热片装上风扇,使得空气在散热片助片间加快流动,其结构包括:由两个IGBT组成一个逆变半桥的结构,其中上半桥开关管由IGBT及与之反并联的二极管组成,下半桥开关管由IGBT及与之反并联的二极管组成,另外包括子模块储能电容器;电源模块,给风扇模块供电;风扇模块,包括驱动电路和扇体。另外,子模块还包括散热片以及外壳。本实用新型提供的带热设计的MMC子模块,通过其结构设计,可以有效地解决子模块热耗散的问题,及时排出IGBT在功率传输时产生的热量。
本实用新型提供了一种电池包热管理结构,包括上壳体和下壳体,所述上壳体和所述下壳体连接,所述下壳体上安装有中间导风板、左侧导风板、右侧导风板和分风板,所述中间导风板具有相互间隔的第一中间导风板和第二中间导风板,所述第一中间导风板和所述第二中间导风板之间形成主风道,风机PTC组件位于所述主风道内,所述左侧导风板与所述第一中间导风板之间、所述右侧导风板与所述第二中间导风板之间形成二级风道,电池单体位于所述二级风道内,所述分风板垂直于所述主风道和所述二级风道,所述分风板上具有与所述主风道连通、与所述二级风道连通的多条分风槽,所述分风板上表面与所述上壳体间隔形成混流区。本实用新型能够提高电池包热均衡性。
本发明公开了一种混合动力汽车充电系统,包括:充电线,用于连接外接充电电源与混合动力汽车充电系统;与充电线连接的充电机,用于执行充电指令;与充电机连接的整车控制器,用于接收整车状态信息,判定充电电压和充电电流,控制充电机执行充电指令;与整车控制器及充电机连接的车载控制器,用于控制相关车载设备;与车载控制器连接的车载设备;与整车控制器及充电机连接的电池管理系统,用于监测动力电池和高压继电器的状态,并将监测的状态信息传输至整车控制器;与电池管理系统连接的动力电池;受控于电池管理系统的高压继电器,高压继电器与动力电池、充电机和车载控制器连接。该充电系统结合了整车多个系统,优化了充电控制。
本发明公开了一种集中式动力电池包的热管理系统,包括第一和第二风扇,控制器,及温度传感器,温度传感器安装在电池包内部,第一、第二风扇安装在位于电池包内部的中央通道上,第一、第二风扇的出风口在中央通道的长度方向上沿相反方位布置;控制器从各温度传感器输出的温度信号中获取对应位置的当前温度值,并计算不同位置的当前温度值间的最大温差;控制器在最大温差大于预设的温差阈值时,驱动第一、第二风扇交替工作,直至检测到最大温差小于或者等于温差阈值为止。本发明的系统通过使两个风扇交替工作的方式,分时形成方向相反的空气循环路径,因此可以提高电池包内空气的融合率和热传导效率,进而可以有效提高电池包的热均衡性。
本发明公开了一种AC设备智能热管理技术的实现方法,增加板卡在线检测机制,及增加多点温度探测机制,MCU控制及通信技术,根据AC设备的板卡是否在线,以确定相应的风机组是否启动,之后根据各板卡的运行温度智能控制相应散热风机组的转速,从而实现设备的智能热管理。本发明是针对AC设备的热管理设计,对AC设备的散热性能进行了优化和改善,依据板卡在线状态及温度进行智能管理和控制,以实现对整个设备系统散热风机的智能控制,在保证设备系统正常散热的前提下,最合理的管控风机,降低风机的能耗,延长风机的使用寿命,使风机的工作更加高效,从而进一步降低了系统设备的故障率,减少运营商的设备维护工作量,同时起到了节能减排的作用。
一种帮助冷却直插存储器模块的系统可包括包含有通道以容纳直插存储器模块的散热器、热界面材料以及包括导热冷板和填充有循环的冷却液的内部液体通道的液体冷却器块。还公开了使用管输送冷却液的系统。
本发明提供了一种中混汽车动力电池热管理系统,包括顺序的布置的第一电池模组和第二电池模组,第一电池模组的底部伸出有连接至第二电池模组的顶部,并罩设于第二电池模组的冷却空气入口上的进气隔板。冷却空气对第一电池模组冷却流出后,受进气隔板的阻挡,由第二电池模组的顶部流出。对第二电池模组冷却时由进气隔板和第二电池模组的底壁之间通入候流出,通过进气隔板的布置,使得第一电池模组和第二电池模组的冷却相互独立,互不干涉,通过对冷却空气流量的控制,使得第一电池模组和第二电池模组的冷却风量一致,在达到降低二者的最高温度的同时,降低二者内部的温差,提高电池系统的效率和可靠性。本发明还提供了一种中混汽车。
一种系统,包括配置为控制车辆系统中的第一接触器和第二接触器的操作的开关控制模块。第一和第二接触器被配置为将前端总线和直流(DC)总线分别有选择地连接到车辆系统的能量存储系统。所述前端总线被配置为从外部电源接收电力并且向转换器设备提供电力。所述转换器设备被配置为向所述DC总线供应DC电力。所述开关控制模块被配置为在所述车辆系统可操作地耦合到所述外部电源时闭合所述第二接触器,以便所述能量存储系统被所述DC电力充电。所述开关控制模块被配置为在所述车辆系统可操作地与外部电源去耦合时闭合第一接触器或者第二接触器之一。
一种基于油浴自然循环与热管相耦合的电池组热管理系统,涉及一种车用电池热管理系统。本发明为了解决现有动力电池组存在的叠压发热、电解液干枯失效直至膨胀起火爆炸的问题。本发明的基于油浴自然循环与热管相耦合的电池组热管理系统包括多个热管和多个循环管,单体电池采用真空密封,热管的蒸发段布置在动力电池箱内,热管的冷凝段穿出箱体顶盖置于动力电池箱外部,热管内设有相变材料,在动力电池箱的剩余空间内充满变压器油,壳体的左右侧壁上均安装有多个循环管,循环管的一端与壳体的上部连通,循环管的另一端与壳体的下部连通,形成变压器油的自然循环。本发明用于动力电池热管理。
本发明涉及一种基于动态SOC估算系统的电池管理系统,该系统包括主控单元、从控单元和上位机,主控单元、从控单元和上位机之间通过CAN总线通信,所述主控单元包括电池检测系统和SOC估算系统,电池均衡策略与控制系统,所述SOC估算系统通过电流传感器和电压传感器采集电池组中各电池的参数进行SOC估算。实现了基于模型的动态SOC估算方法对荷电状态SOC的动态估算,其估算结果表明动态SOC估算方法对系统模型噪声以及测量噪声都具有较强的抑制作用,不仅对系统模型的初始值误差具有较强的修正作用,同时还对模型参数的辨识结果具有一定的鲁棒性。
本实用新型涉及一种基于动态SOC估算系统的电池管理系统,该系统包括主控单元、从控单元和上位机,主控单元、从控单元和上位机之间通过CAN总线通信,所述主控单元包括电池检测系统和SOC估算系统,电池均衡策略与控制系统,所述SOC估算系统通过电流传感器和电压传感器采集电池组中各电池的参数进行SOC估算。实现了基于模型的动态SOC估算方法对荷电状态SOC的动态估算,其估算结果表明动态SOC估算方法对系统模型噪声以及测量噪声都具有较强的抑制作用,不仅对系统模型的初始值误差具有较强的修正作用,同时还对模型参数的辨识结果具有一定的鲁棒性。
本实用新型公开了一种基于温差发电的LNG热管理系统,包括LNG通道、冷却液通道、温差发电器、冷却水泵、流量调节阀、控制系统和发动机冷却水套;LNG通道连接温差发电器的冷端,冷却液通道连接温差发电器的热端;LNG通道出气口连接发动机的进气管,冷却液通道的冷却液入口连接冷却水泵,冷却液通道的冷却液出口连接发动机冷却水套,流量调节阀设在冷却液通道的冷却液入口和冷却水泵之间,控制系统连接流量调节阀。本实用新型充分利用了发动机中的冷却液和LNG气化的冷能,利用温差发电器实现了能量的回收,从而实现了能量回收和热管理系统有效结合,且可以实现对发动机的进气温度和冷却液温度的双重调节。