本发明公开了一种用于检测空调热负荷及制冷剂流量的检测方法,包括:获取空调的进风口焓值和出风口焓值;根据进风口焓值和出风口焓值获得第一焓差;获取鼓风机风量;根据第一焓差和鼓风机风量获得空调热负荷;获取冷凝器出液口处的焓值和蒸发器出气口处的焓值;根据冷凝器出液口处的焓值和蒸发器出气口处的焓值获得第二焓差;根据质量流量公式计算获得制冷剂流量。本发明提供的用于检测空调热负荷及制冷剂流量的检测方法,利用焓差和鼓风量实现了对空调热负荷的计算,同时,根据焓差和热负荷,实现了对制冷剂流量的计算,根据反馈的热负荷信号和制冷剂流量信号,有效提升了空调系统及整车热管理系统的性能管理。
一种用于管理飞机或燃气涡轮发动机中的至少一者的热量转移的系统包括利用油以用于热量转移的第一发动机系统(202)。第一系统的油具有至少大约500℉的温度极限。该系统还包括燃料系统(206),该燃料系统(206)具有用于使燃料系统(206)中的燃料脱氧的脱氧单元(212)、以及位于脱氧单元(212)下游的燃料-油热交换器。燃料-油热交换器与第一发动机系统(202)中的油和燃料系统(206)中的燃料热连通,以用于将热量从第一发动机系统(202)中的油转移至燃料系统(206)中的燃料。
本发明公开了一种可阻止热失控扩展的圆柱动力电池液冷热管理结构,在电池箱体内部两侧分别布置进水母管和出水母管,并呈行列式布置各电池模组,电池模组是由各电池组合体呈行列式排布;在电池组合体中,电芯分布在四角位置上,电芯间空隙填充导热材料形成导热星形块,导热星形块的中心设置竖直细管,同一行中电池组合体的竖直细管由水平细管相连成一路液体换热管;液体换热管在两端与进水母管和出水母管连通;将处在同一行中的导热星形块设置为不同高度,并设置隔热防冲击薄板将各电池组合体合围成四周侧壁封闭的单元体。本发明能够实现圆柱体动力电池的高效、均一降温和升温,且能有效阻止单一电芯热失控的扩展,显著提升电池组安全性能。
本发明公开了一种电池加热系统和电池加热控制方法。该电池加热系统包括加注液壶、水泵、加热器、电池加热管路、热管理模块控制器。该电池加热控制方法包括:热管理模块控制器接收VCU发送的工作模式信息,判断是否可以开启电池加热循环回路;如果可以开启,则通过VCU从BCU获取电池内部多个检测点取平均值得到的平均温度信息,并判断平均温度是否低于第一规定温度TI,若否,则令电池加热循环回路保持关闭,若是,则开启并控制电池加热循环回路中的加热器的加热功率,开启并控制电池加热循环回路中的水泵的转速。本发明能够实现对动力电池进行加热和加热管理的目的,可以保证电动汽车电池在低温环境中可以正常使用。
本实用新型属于电动汽车电池包冷却技术领域,具体是涉及一种液冷换热器。包括由散热板叠合形成的散热组件,散热组件的背部固定在安装支架上,处于最顶部的散热板的上侧通过上边板封装,处于最底部的散热板的底侧通过下边板封装。本实用新型的液冷换热器,作为电池热管理系统的重要部件之一,其主体由铝质散热板层层叠合而成,每层之间形成空腔作为冷却液和制冷剂的流通通道。制冷剂进、出管接口和散热板之间形成的第一、三、五等奇数个空腔为制冷剂通道;冷却液进、出管和散热板之间形成的第二、四、六等偶数个空腔为冷却液通道。因此,利用散热板可将冷却液和制冷剂进行热交换,已达到冷却电池包的作用。
本发明涉及纯电动汽车制造技术领域,具体涉及一种纯电动汽车能量管理与能量回收方法,行驶模式下,电池包允许的最大充电功率为以下两种情况下的最小值:其一、BMS允许的最大充电瞬时功率;其二、BMS允许的最大充电持续功率。TMM能量分配,具体地,其一、在有除霜除雾请求的情况下,优先响应除霜除雾功能;其二、无除霜除雾请求,VCU首先需要根据电池包允许的最大放电功率来判断电池热管理功率和行驶功率分配的优先级。整车行驶和热管理过程中,VCU控制电池根据需求优先给DCDC分配功率,并分配车辆行驶和热管理间的能量消耗。并且所有的控制器都保持协调工作状态,提高了电动车辆的能量使用效率,增加了电动车辆的续航里程。
本发明公开了一种整车快速暖机热管理系统及控制方法,包括发动机、保温瓶、散热器、暖风水箱、整车控制机构、第一电磁阀、第二电磁阀和第三电磁阀;发动机包括第一入水口和第一出水口,保温瓶上设置有第二入水口、第二出水口和出水口控制开关,出水口控制开关用于控制第二出水口的开启或关闭;散热器包括第三入水口和第三出水口;第一出水口连通至第二入水口,第二出水口连通至第三电磁阀,第三电磁阀连通至第一入水口;第二出水口与第三入水口连通,第三出水口与第一入水口连通。本发明在暖风回路并联保温管路,结合保温瓶及电磁阀的控制逻辑,解决了车辆水温上升速率慢的问题,能够使发动机快速暖机。
本发明涉及一种混合动力汽车动力电池热管理系统及控制方法,包括发动机冷却水套、设置有冷却水路的动力电池、三通电子阀、电池散热器及电子水泵。本申请的混合动力汽车的动力电池热管理系统,使其快速升温至全功率工作区间内,避免持续低温混动系统无法正常使用;在电池正常工作时,为避免电池工作升温至降功率区域,依靠一套冷却回路,包括风扇、散热器、电子水泵,进行动力电池的冷却,使其维持在全功率运行温度区间,最大化利用混合动力能力。
本发明公开了一种混合动力车型热管理系统,该系统通过采用两个四通阀,将发动机冷却系统、中冷冷却系统、采暖系统、强电系冷却系统、电池冷却系统、空调系统集成为一个更为高效的系统,在电池需要加热时,通过控制四通阀、三通阀相关通道的通断,有效的利用强电系、HVH或者发动机余热给电池加热;在电池需要冷却时,根据电池的冷却需求,利用强电散热器、电池冷却器(Chiller)等不同方式进行冷却。本发明能够最大限度的发挥系统部件的功能,有效的利用系统余热,降低系统功耗、提高纯电续驶里程。
本发明公开一种纯电动车型热管理系统,包括采暖系统、强电系冷却系统、电池冷却系统等。其在强电系冷却系统与电池冷却系统之间设置四通阀V2,连通两个回路,在采暖系统与所述电池冷却系统之间设置四通阀V1,连通两个回路。该纯电动车型热管理系统根据电池冷却系统在不同工况下的冷却需求,可以采用强电散热器或者空调系统等方式冷却,降低系统功耗;当有采暖需求或者电池加热需求时,通过四通阀切换回路,可以充分利用高压电加热器(HVH)或者强电系余热为乘员舱采暖、电池加热,能够最大限度的发挥系统部件的功能,有效的利用系统余热,降低系统功耗、提高续驶里程。
本发明涉及一种氢燃料电池汽车热管理系统及控制方法,包括膨胀水壶,水泵,电子节温器,燃料电池散热器,电磁阀,燃料电池堆,离子交换器。克服现有燃料电池堆不能在过低环境温度条件启动工作的制约,通过在小循环支路设计了辅助水加热方案,实现燃料电池堆低温快速启动,提高燃料电池堆低温环境的适应能力;通过在水路系统增加一路辅助空调水暖换热系统,实现燃料电池堆的废热回收利用,减少了空气加热器的用电需求,节约了整车电能,增加冬季车辆的续航里程;通过燃料电池堆除气装置的设计改进,解决燃料电池堆水路系统在加注和运行过程中的除气难题,提升燃料电池热管理系统工作的可靠性。
本申请涉及电动汽车热管理系统,具体为一种电动汽车低功耗热管理系统,包括电动压缩机、冷凝器、冷媒电磁阀、热力膨胀阀、HVAC总成、电子膨胀阀、冷却器、第一膨胀水壶、第三电子水泵、第四三通阀门与第三三通阀门;其经过组合后形成乘客舱制冷循环回路、电池强制降温循环回路、电池低温散热循环回路、乘客舱采暖循环回路、电池强制加热循环回路、电池余热利用循环回路、电池均温循环回路、电机冷却循环回路。其能有效减少利用PTC及电动压缩机对电池加热与降温,从而减少整车功耗,增加续航里程。